
System Programming Fall 2022 � haewonc

1 Linking
Linking is the process of collecting and combining various pieces
of code and data into a single file that can be loaded (copied) into
memory and executed. Programs are translated and linked using a
compiler driver: gcc -Og -o out main.c sum.c.

Figure 1. The static linking.

1.1 Why linkers?
• Modularity. Program can be written as a collection of smaller

source files. Can build libraries of common functions.
• Time efficiency. Separate compilation. Change one source file,

compile, and then relink.
• Space efficiency. Running memory images contain only code

for the functions we actually use, rather than a whole library.

1.2 What do linkers do?
1.2.1 Symbol resolution

Programs define and reference symbols (global variables and func-
tions). Symbol definitions are stored in object file by assembler in
symbol table, array of struct which includes name, size, and lo-
cation of each symbol. During symbol resolution, the linker asso-
ciates each symbol reference with exactly one symbol definition.

1.2.2 Relocation

• Merge separate code and data sections into single section.
• Relocate symbols from their relative locations in the .o files to

their final absolute memory locations in the executable.
• Update all references to symbols to reflect their new positions.

1.3 Object files (Modules)
1.3.1 Three kinds of object files

• Relocatable object file (.o file): Produced from one source (.c)
file. Contains code and data in a form that can be combined
with other relocatable object files to form executable object file.
• Executable object file (.out file): Contains code and data in a

form that can be copied directly into memory and then executed.
• Shared object file (.so file): Special type of relocatable object

file that can be loaded into memory and linked dynamically,
at either load time or run-time. Called dynamic link libraries
(DLLs) in Windows.

1.3.2 Executable and linkable format (ELF)

ELF binary is the standard binary format for object files. It is one
unified format for .o, .out, and .so files.

• Elf header: word size, byte ordering, file type (.o, exec, .so),
machine type
• Segment header table: page size, virtual addresses memory seg-

ments (sections), segment sizes.
• .text: code
• .rodata: read only data, e.g., jump tables
• .data: initialized global variables
• .bss (better save space): uninitialized global variables. Has sec-

Figure 2. ELF object file format.

tion header but occupies no space
• .symtab: symbol table, procedure and static variable names,

section names and locations
• .rel .text: relocation info for code (.text)
• .rel .data: relocation info for .data section. Addresses of pointer

data that will need to be modified in the merged executable
• .debug: info for symbolic debugging gcc -g
• Section header table: offsets and sizes of each section

1.4 Linker symbols
• Global symbols: Defined by module that can be referenced by

other modules, e.g., non-static C functions and global variables
• External symbols: Referenced by module but defined by some

other module
• Local symbols: Defined and referenced exclusively by module,

e.g., static C functions and global variables

Local linker symbols are not local program variables.

1.4.1 Local symbols

• Local non-static C variables: stored on the stack
• Local static C variables: stored in either .bss or .data

Compiler allocates space in .data for each definition of x. Creates
local symbols in the symbol table with unique names: x.1 and x.2.

1 int f(){
2 static int x = 0;
3 return x; }
4 int g(){
5 static int x = 1;
6 return x; }

1.4.2 Global variables

Avoid if you can. Otherwise, use static if you can or initialize.
Use extern if you reference an external global variable.

1.5 Step 1: Symbol resolution
The input to the linker is relocatable object modules. What hap-
pens if multiple modules define global symbols with same name?

1.5.1 Global symbols are either strong or weak

• Strong: procedures and initialized globals
• Weak: uninitialized globals

1.5.2 Linker’s symbol rules

1. Multiple strong symbols are not allowed. Each item can be
defined only once. Otherwise: linker error

2. Given a strong symbol and multiple weak symbols, choose
the strong symbol. References to the weak symbol resolve to
the strong symbol.

3. If there are multiple weak symbols, pick an arbitrary one.
Can override this with gcc -fno-common.

System Programming Fall 2022 � haewonc

Figure 3. Linker puzzles.

1.6 Step 2: Relocation
Once the linker has completed the symbol resolution, it knows the
exact sizes of the code and data sections in its input object mod-
ules. Then linker begin relocation, where it merges the input mod-
ules and assigns run-time addresses to each symbol. Relocation
consist of two steps:

1. Relocating sections and symbol definitions. The linker merges
all sections of the same type into a new aggregate section. The
linker then assigns run-time memory addresses to the new ag-
gregate section, to each section and to each symbol defined by
input modules, so that each instruction and global variable in
the program has a unique run-time memory address.

2. Relocating symbol references within sections. The linker
modifies every symbol reference in the bodies of the code and
data sections so that they point the correct run-time addresses.

Figure 4. Relocation.

1.6.1 Relocation entries

When an assembler generates an object module, it does not know
where the code, data, and externally defined functions or global
variables that are referenced be stored in memory. So whenever
assembler encounters a reference to an object whose location is
unknown, it generates a relocation entry that tells the linker how
to modify the reference when it merges the object file into an ex-
ecutable. Relocation entries for code are placed in .rel.text and
data are placed in .rel.data.

Format of an ELF relocation entry

1 typedef struct {
2 long offset; // Offset of the reference to relocate
3 long type:32, // Relocation type
4 symbol:32; // Symbol table index
5 long addend; // Constant part of relocation

expression
6 } Elf64_Rela;

ELF defines 32 different relocation types, but we are concerned
with only the two most basic types:

• R_X86_64_PC32. Relocate a reference that uses a 32-bit PC-
relative address, i.e., offset from current run-time value of PC.
• R_X86_64_32. Relocate a reference that uses a 32-bit abso-

lute address. CPU directly uses 32-bit value encoded in the in-
struction as effective address, e.g., the target of call instruction

1.6.2 Relocating symbol references

Pseudocode for the linker’s relocation algorithm

1 foreach section s {
2 foreach relocation entry r {
3 rp = s + r.offset; // ptr to ref to be relocated
4 if (r.type == R_X86_64_PC32) {
5 ra = ADDR(s) + r.offset; // run-time address of ref
6 *rp = (unsigned) (ADDR(r.symbol) + r.addend - ra); }
7 if (r.type == R_X86_64_32){
8 *rp = (unsigned) (ADDR(r.symbol) + r.addend);}
9 }}

1.7 Executable object files

(a) ELF executable object file (b) Runtime memory image

• .text, .rodata, .data: similar to object file
• .init: defines a small function called _init that will be called by

the program’s initialization code
• No .rel sections since the executable is fully linked
• Program header table: describes mapping from contiguous chunks

of the executable file to contiguous memory segments

The loader copies the code and data in the executable object file
from disk into memory and then runs the program by jumping to
its first instruction, or entry point.

1.8 Static libraries (.a archive files)
1. Concatenate related relocatable object files into a single file

with an index, called an archive
2. Enhance linker so that it tries to resolve unresolved external

references by looking one or more archives
3. If archive member file resolves reference, link it

Figure 5. Creating static libraries
Archiver allows incremental updates. It recompiles function that
changes and replace .o file in archive.

System Programming Fall 2022 � haewonc

1.8.1 Commonly used libraries

• libc.a (C standard library): I/O, memory allocation, ...
• libm.a (C math library): sin, cos, log, exp, ...

Figure 6. Linking with static libraries

1.8.2 Solving external references

1. Scan .o files and .a files in the command line order
2. For each scan, try to resolve each unresolved reference
3. If any entry in unresolved at the end of scan, error

Command line order matters.

1.9 Shared libraries (.so files)
Static libraries have the following disadvantages:

• Duplication in the stored executables (every function needs libc)
• Duplication in running executable
• Minor bug fixes of system libraries require each application to

explicitly relink

Solution is using shared libraries: object files that contain code
and data that are loaded and linked into an application dynami-
cally, at either load-time and run-time. It is also called dynamic
link libraries (DLLs) and performed by a dynamic linker. A sin-
gle copy of the .text section of a shared library in memory can be
shared by different running processes.

1.9.1 Load-time linking

gcc -shared -o libvector.so addvec.c multvec.c

Figure 7. Dynamic linking in load time

1.9.2 Run-time linking

In Linux, this is done by calls to the dlopen().

Code 1. Dynamic linking at run-time

1 int x[2] = {1, 2};
2 int y[2] = {3, 4};
3 int z[2];
4

5 int main() {
6 void *handle;
7 void (*addvec)(int *, int *, int *, int);
8 char *error;
9 /* Dynamically load the shared library that contains

addvec() */
10 handle = dlopen("./libvector.so", RTLD_LAZY);
11 if (!handle) {
12 fprintf(stderr, "%s\n", dlerror());
13 exit(1); }
14 /* Get a pointer to the addvec() function we just

loaded */
15 addvec = dlsym(handle, "addvec");
16 if ((error = dlerror()) != NULL) {
17 fprintf(stderr, "%s\n", error);
18 exit(1); }
19 /* Now we can call addvec() just like any other

function */
20 addvec(x, y, z, 2);
21 printf("z = [%d %d]\n", z[0], z[1]);
22 /* Unload the shared library */
23 if (dlclose(handle) < 0) {
24 fprintf(stderr, "%s\n", dlerror());
25 exit(1); }
26 }

1.10 Library interpositioning
Library interpositioning is a powerful linking technique that al-
lows programmers to intercept calls to arbitrary functions. Given
target function, create a wrapper function whose prototype is iden-
tical to the target function. Then trick the system into calling the
wrapper function instead of the target function. Interpositioning
can occur at compile time, link time, or load/run time.

1.10.1 Applications

• Security
• Debugging
• Monitoring and profiling

– Count number of calls to functions
– Characterize call sites and arguments to functions
• Malloc tracing

– Detecting memory leaks
– Generating address traces

System Programming Fall 2022 � haewonc

2 Exceptional control flow
Processors do only one thing: read and execute a sequence of in-
structions, one at a time. This sequence is the CPU’s control flow.
The abrupt changes to the flow is caused by instructions such as
jumps, calls, and returns. Such instructions allow programs to re-
act to changes in internal program state.

But systems must also be able to react to changes in system state
that are not captured by internal program variables and are not
necessarily related to the execution of the program, for example:

• User hits Ctrl-C at the keyboard
• Instruction divides by zero
• Data arrives from a disk or a network adapter

Modern systems react to these situations by making abrupt changes
in the control flow, which is called exceptional control flow (ECF).

Mechanism Level Implemented by

Exceptions Low Hardware and OS software
Process context switch High Os software and hardware timer

Signals High OS software
Nonlocal jumps High C runtime library

Table 2. ECF exists at all levels of a computer system.

2.1 Exceptions
An exception is a transfer of control to the OS kernel in response to
some event, e.g., divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C. As shown in Fig. 8, a change in

Figure 8. Anatomy of an exception.

the processor’s state (an event) triggers an abrupt control transfer
(an exception) from the application program to an exception han-
dler. After finishing processing exception, one of below happens:

• Handler returns control to current instruction Icurr.
• Handler returns control to next instruction Inext, i.e., the instruc-

tion that would have executed after Icurr if event not occurred
• Handler aborts the interrupted program

2.1.1 Exception handling

Each type of possible exception in a system is assigned a unique
nonnegative integer exception number. At the system boot time,
OS allocates and initializes a jump table called exception table,
so that entry k contains the address of the handler for exception
k. The starting address of exception table is contained in special
CPU register called the exception table base register.

Figure 9. Exception table.

At run time, the processor detects that an event has occurred and
determines the corresponding exception number k. The processor
then triggers the exception by making an indirect procedure call
through entry k.

1. Processor pushes a return address on the stack, either current
or next instruction depending on the class of exception

2. Processor pushes an additional processor state on the stack that
will be necessary to restart the interrupted program when the
handler returns, e.g., current condition codes

3. When control is transferred from a user program to the kernel,
all of these items are pushed onto the kernel’s stack

4. Exception handlers run in kernel mode, which means they have
complete access to all system resources

2.1.2 Classes of exceptions

• Asynchronous: caused by events external to the processor
• Synchronous: caused by events that occur as a result of execut-

ing an instruction

2.2 System calls
System call is user process calling a system (kernel).

Number Name Description

0 read Read file
1 write Write file
2 open Open file
3 close Close file
4 stat Get info about file
57 fork Create process
59 execve Execute a program
60 _exit Terminate process
62 kill Send signal to process

Table 3. List of system calls

2.2.1 Example: Opening file

User calls open(filename, options). It calls __open function,
which invokes system call instruction syscall.

Class Cause Example Sync Return behavior

Interrupt Signal from I/O device Ctrl-C, arrival of packet or data Async Next
Trap Intentional exception System calls, breakpoints Sync Next
Fault Potentionally recoverable error Page and protection faults, floating point Sync Current or abort
Abort Nonrecoverable error Illegal instruction, parity error Sync Abort

Table 1. Classes of exceptions.

System Programming Fall 2022 � haewonc

2.2.2 Example: Page fault

User writes to memory location, but that page of user’s memory is
currently on disk.

2.2.3 Example: Invalid memory reference

Send SIGSEGV signal to user process. User process exit with
segmentation fault.

2.3 Processes
A process is an instance of a running program. Process provides
each program with two key abstractions:

• Logical control flow: Seems to have exclusive use of the CPU.
Provided by kernel mechanism called context switching
• Private address space: Seems to have exclusive use of main

memory. Provided by kernel mechanism called virtual memory.

2.3.1 Multiprocessing

Traditionally, single processor executes multiple processes con-
currently. Register values for processes saved in memory and
loaded. Recently, we use mutlicore processors. There are mul-
tiple CPUs on a single chip, sharing main memory and some of
the caches. So, each can execute a separate process. Scheduling
of processors onto cores done by kernel.

2.3.2 Concurrent processes

Each process is a logical control flow. Two processes run concur-
rently if their flows overlap in time. Otherwise, they’re sequential.

Figure 10. A & B, A & C are concurrent. B & C is sequential.

Control flows for concurrent processes are physically disjoint in
time. However, user views they are running in parallel.

Figure 11. User view of concurrent processes.

2.3.3 Context switching

Processes are managed by a shared chunk of memory-resident OS
code called kernel. The kernel is not a separate process, but rather
runs as part of some existing process. Control flow passes from
one process to another via a context switch.

Figure 12. Context switch.

2.4 Process control
2.4.1 System call error handling

On error, Linux system-level functions typically return -1 and set
global variable errno to indicate cause. So check return status of
every system-level function, except a few that return void.

Code 6. Error handling

1 /* Error-reporting function */
2 void unix_error(char *msg) {
3 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
4 exit(0);
5 }
6 /* Error-handling wrappers */
7 pid_t Fork(void) {
8 pid_t pid;
9 if ((pid = fork()) < 0) unix_error("Fork error");

10 return pid;
11 }
12 pid = Fork();

2.4.2 Obtaining process IDs

• pid_t getpid(void) returns PID of current process
• pid_t getppid(void) returns PID of parent process

2.4.3 State of processes

• Running: either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel
• Stopped: execution is suspended and will not be scheduled un-

til further notice
• Terminated: stopped permanently

2.4.4 Terminating processes

Process becomes terminated for one of three reasons:

• Receiving a signal whose default action is to terminate
• Returning from the main routine
• Calling the exit function. void exit(int status) terminates with

an exit status of status. Normal returns status is 0 and nonzero
indicates error. exit is called once and never returns.

2.4.5 Creating processes

Parent process creates a new running child process by calling fork.
int fork(void)

• Returns 0 to the child process
• Returns child’s PID to parent process
• Child gets an identical copy of the parent’s virtual address space
• Child gets identical copies of the parent’s open file descriptors
• Child has a different PID with the parent

2.4.6 Process graphs

A process graph captures the partial ordering of statements in a
concurrent program.

• Each vertex is the execution of a statement
• a→ b means a happens before b
• Edges labeled with current value of variables
• Graph begins with a vertex with no incoming edges

Any topological sort of the graph corresponds to a feasible total
ordering. It is when all edges point from left to right.

2.4.7 Process groups

Every process belongs to exactly one process group.

• getpgrp(): return process group of current process
• setpgid(): change process group of a process

System Programming Fall 2022 � haewonc

2.4.8 Fork examples

Code 7. Fork example 1

1 int main() {
2 pid_t pid;
3 int x = 1;
4 pid = Fork();
5 if (pid == 0) { /* Child */
6 printf("child: x=%d\n", ++x); exit(0); }
7 /* Parent */
8 printf("parent: x=%d\n", --x); exit(0);
9 }

10 /* Output: parent: x=0 child: x=2 */

• Call one, return twice
• Concurrent execution: cannot predict execution order
• Duplicate but separate address spaces

– x has a value of 1 when fork returns in parent and child
– Changes in x are independent
• Shared open files: stdout is the same in both parent and child

Figure 13. Process graph of fork example.

Figure 14. Feasible ordering of graph.

Figure 15. Fork examples.

2.4.9 Reaping child processes

When process terminates, it still consumes system resources, called
a zombie. Reaping is performed by parent on terminated child.
Parent is given exit status information. Kernel then deletes zom-
bie child process. If any parent terminates without reaping a child,
then the orphaned child will be reaped by init process (pid==1).
So, we only need explicit reaping in long-running processes, e.g.,
shells and servers.

Figure 16. Zombie and non-terminating child examples

2.4.10 wait: Synchronizing with children

int wait(int *child_status).

• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated
• If child_status!=NULL, then the integer it points to will be set

to a value that indicates the reason the child terminated and the
exit status

Figure 17. Wait example

If multiple children completed, it will take in arbitrary order. We
can use macros WIFEXITED and WEXITSTATUS to get infor-
mation about exit status.

System Programming Fall 2022 � haewonc

2.4.11 waitpid: Waiting for a specific process

pid_t waitpid(pid_t pid, int &status, int options) suspends cur-
rent process until specific process terminates.

Figure 18. Waitpid example

2.4.12 execve: Loading and running programs

int execve(char *filename, char *argv[], char *envp[]) loads
and runs executable file filename in the current process with argu-
ment list argv and envrionment variable list envp. By convention,
argv[0] == filename. envp is in format of name=value.

It overwrites code, data, and stack. IT reatins PID, open files, and
signal context. It is called once and never returns except error.

Figure 19. Organization of user stack when new program starts.

Figure 20. execve example

2.5 Shell
Shell is application program that runs programs on behalf of user.

Figure 21. Simple shell eval function

The example shell correctly waits for and reaps foreground jobs.
But what about background jobs?

• Will become zombie when they terminate
• Will never be reaped because shell will not terminate
• Will create a memory leak that could run kernel out of memory

2.5.1 Process states

ps w shows the state of the processes.

No. Letter Meaning

First
S sleeping
T stopped
R running

Second s session leader
+ foreground group

Table 4. STAT legend

2.6 Signals
A signal is a message that notifies a process that an event of some
type has occurred in the system. It is sent from kernel to process.

ID Name Default action Event

2 SIGINT Terminate User typed Ctrl-C
9 SIGKILL Terminate Kill program
11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Table 5. List of signals

Kernel sends a signal to a destination process by updating some
state in the context of the process. Kernel sends a signal because:

• Kenrel has detected a system event such as divide-by-zero or
the termination of a child process
• Another process has invoked the kill call to request the kernel to

send a signal to the destination process

A destination process receives a signal when it is forced by the
signal to react in some way to the delivery of the signal.

• Ignore signal: do nothing
• Terminate to process
• Catch signal by executing a user-level function: signal handler

A signal is pending if sent but not yet received. Signals are not
queued. There can be at most one pending signal of certain type.
A process can block receipt of certain signals. Blocked signals can
be delivered, but will not be received until signal is unblocked.

Kernel maintains pending and blocked bit vectors in the context
of each process.

• Kernel sets/clears bit k in pending when a signal of type k is
delivered/received
• blocked can be set and cleared using the sigprocmask function

2.6.1 Sending signals

/bin/kill sends arbitrary signal to a process or process group.

• /bin/kill -9 24818: send SIGKILL to process 24818
• /bin/kill -9 -24817: send SIGKILL to processes in group 24817

Typing Ctrl-C/Ctrl-Z causes the kernel to send a SIGINT/SIGT-
STP to every job in the foreground process group.

System Programming Fall 2022 � haewonc

2.6.2 Receiving signals

Suppose kernel is returning from an exception handler and is ready
to pass control to process pnb. Kernel computes pnb = pending
& ∼ blocked, the set of pending nonblocked signals of process p.

• If pnb==0, pass control to next instruction in logical flow for p
• Else, repeat for all nonzero k in pnb:

– Choose least nonzero bit k in pnb and force processes p to
receive signal k

– The receipt of the signal triggers some action by p
– Pass control to next instruction in logical flow for p

Each signal type has a predefined default action, which is one of:

• The process terminates
• The process stops until restarted by a SIGCONT signal
• The process ignores the signal

2.6.3 Installing signal handlers

The signal function modifies the default action associated with the
receipt of signal signum:

handler_t *signal(int signum, handler_t *handler).

• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action of type signum
• Otherwise, handler is the address of a user-level signal handler.

Code 8. Signal handling example

1 /* Install the SIGINT handler */
2 if (signal(SIGINT, sigint_handler) == SIG_ERR)
3 unix_error("signal error");
4 pause(); // Wait for the receipt of a signal

Signal handler is a separate logical flow, not process, that runs
concurrently with the main program.

2.6.4 Nested signal handlers

Handlers can be interrupted by other handlers.

2.6.5 Blocking and unblocking signals

To avoid nested signal handling, block signals. Kernel implic-
itly blocks any pending signals of type currently being handled.
Explicit blocking is done by sigprocmask function. Supporting
functions are:

sigemptyset Create empty set
sigfillset Add every signal number to set

sigaddset Add signal number to set
sigdelset Delete signal number from set

Code 9. Temporarily blocking signals

1 sigset_t mask, prev_mask;
2 Sigemptyset(&mask);
3 Sigaddset(&mask, SIGINT);
4 /* Block SIGINT and save previous blocked set */
5 Sigprocmask(SIG_BLOCK, &mask, &prev_mask);
6 /* Code region that will not be interrupted by SIGINT */
7 /* Restore previous blocked set, unblocking SIGINT */
8 Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

2.6.6 Async-Signal-Safety

Function is async-signal-safe if either reentrant, i.e., all variables
stored on stack frame, or non- interruptible by signals.

• Safe: _exit, write, wait, watipid, sleep, kill
• Not safe: printf, malloc, exit

write is the only async-signal-safe output function.

2.6.7 Example: Wait all child process

Put wait in a loop to reap all terminated children. This is wrong.
Parent process don’t have to wait for all child to terminate. It
needs to do its own work. Since we install handler to SIGCHLD,
just handle processes that gave parent SIGCHLD.

1 void child_handler2(int sig){
2 int olderrno = errno;
3 pid_t pid;
4 while ((pid = wait(NULL)) > 0) {
5 ccount--;
6 Sio_puts("Handler reaped child ");
7 Sio_putl((long)pid);
8 }
9 errno = olderrno;

10 }

2.6.8 Example: Synchronizing flows

mask_one corrects the synchronization error that assumes parent
runs before child. Without it, parent would not receive SIGCHLD
since it did not added child yet.

1 void handler(int sig) {
2 int olderrno = errno;
3 sigset_t mask_all, prev_all;
4 pid_t pid;
5 Sigfillset(&mask_all);
6 while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap

child */
7 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
8 deletejob(pid);
9 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

10 }
11 errno = olderrno;
12 }
13

14 int main(int argc, char **argv){
15 int pid;
16 sigset_t mask_all, mask_one, prev_one;
17 Sigfillset(&mask_all);
18 Sigemptyset(&mask_one);
19 Sigaddset(&mask_one, SIGCHLD);
20 Signal(SIGCHLD, handler);
21 initjobs(); /* Initialize the job list */
22 while (1) {
23 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /*

Block SIGCHLD */
24 if ((pid = Fork()) == 0) { /* Child process */
25 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /*

Unblock SIGCHLD. Child may make its children! */
26 Execve("/bin/date", argv, NULL);
27 }
28 Sigprocmask(SIG_BLOCK, &mask_all, NULL); /*

Parent process */
29 addjob(pid);
30 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /*

Unblock SIGCHLD */
31 }
32 exit(0);
33 }

System Programming Fall 2022 � haewonc

2.6.9 Example: Explicitly waiting for signal

Handlers for program explicitly waiting for SIGCHLD to arrive.
Code below is a still nonsense (bur correct) since it immediately
returns child process after fork, and it waits for SIGCHLD in-
stead of adding child process to the job list. The parent pro-
cess explicitly wait for the global variable pid to change by the
sigchld_handler. This is still inaccurate, but similar to a shell
waiting for a foreground job.

1 volatile sig_atomic_t pid;
2 void sigchld_handler(int s) {
3 int olderrno = errno;
4 pid = Waitpid(-1, NULL, 0); /* Main is waiting for

nonzero pid */
5 errno = olderrno;
6 }
7 void sigint_handler(int s) { }
8

9 int main(int argc, char **argv) {
10 sigset_t mask, prev;
11 Signal(SIGCHLD, sigchld_handler);
12 Signal(SIGINT, sigint_handler);
13 Sigemptyset(&mask);
14 Sigaddset(&mask, SIGCHLD);
15 while (1) {
16 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block

SIGCHLD */
17 if (Fork() == 0) /* Child */
18 exit(0);
19 /* Parent */
20 pid = 0;
21 Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock

SIGCHLD */
22 /* Wait for SIGCHLD to be received (wasteful!) */
23 while (!pid) ;
24 /* Do some work after receiving SIGCHLD */
25 printf(".");
26 }
27 exit(0);
28 }

Let’s think of other options than waiting. First approach is using
pause, which waits until any signal comes. However it could go
around (race) when the process get the SIGCHLD signal just after
entering the while but just before pause. Then pause will wait
forever, because the process already got signal!

1 while(!pid) pause();

Second approach is using wait, which never going to stuck you.
However, it is too slow. The child may end just after 1ms. But
process should still wait for 1s.

1 while(!pid) sleep(1);

Solution is using: int sigsuspend(const sigset_t *mask).

1 while(!pid) sigsuspend(&prev);

It is equivalent to uninterreuptable (atomic) version of:

1 sigprocmask(SIG_BLOCK, &mask, &prev);
2 pause();
3 sigprocmask(SIG_SETMASK, &prev, NULL);

Since we blocked mask and the operations are atomic, pid cannot
change before pause.

3 Virtual Memory (VM)

3.1 Physical addressing versus virtual addressing

Physical addressing Virtual addressing

Simple systems like camera Most of the devices
Directly access physical MMU translates virtual to physical

3.2 Why VM?
• Use main memory efficiently: Use DRAM as a cache for parts

of a virtual address space
• Simplifies memory management: Each process gets the same

uniform linear address space
• Isolates address spaces

– One process can’t interfere with another’s memory
– User program cannot access privileged kernel info and code

3.2.1 Address spaces

Linear Ordered set of contiguous integer {0, 1, · · · }
Virtual Set of N = 2n virtual addresses {0, 1, · · · ,N − 1}

Physical Set of M = 2m physical addresses {0, 1, · · · ,M − 1}

Table 6. List of address spaces

3.3 VM as a tool for caching
Conceptually, VM is an array of contiguous bytes stored on disk.
Since it is typically larger than physical memory, VM provides
mechanism for using the DRAM as cache.

3.3.1 Pages

Figure 22. Virtual pages

The memory is splitted into page, a chunk of caches. Size of page
is P = 2p bytes. In Linux system, p = 12, which means that we
need 12 bits to access particular bytes in page. The number of vir-
tual pages is 2n−p − 1, excluding the first VP which is unallocated.

3.3.2 DRAM cache organization

DRAM is about 10x slower than SRAM, and disk is about 10,000x
slower than DRAM. DRAM cache organization is driven by the
enormous miss penalty, i.e., the cost of accessing something that
is not close to CPU. As a result,

• Large page size, typically 4KB: increase the hit rate
• Fully associative: Any VP can be placed in any PP
• Highly sophisticated, expensive replacement algorithms
• Write-back rather than write-through

3.3.3 Enabling data structure: Page table

Replacement. If there’s a miss, a system determines where the
VP is stored on disk, select a victim page in physical memory, and
copy the VP from disk to DRAM, replacing the victim page. This
is provided by a combination of OS software, MMU, and data
structure stored in physical memory known as a page table that
maps virtual pages to physical pages.

System Programming Fall 2022 � haewonc

Figure 23. Page table

A page table is an array of page table entries (PTEs). Each page
in the virtual address space has a PTE at a fixed offset in the page
table. Valid bit indicates whether the VP is cached in DRAM:

• 1 (cached): the address indicates the start of the corresponding
PP in DRAM where the VP is cached
• 0 (unallocated): null address indicates that VP not allocated
• 0 (uncached): the address points to the start of the VP on disk

3.3.4 Handling page faults

• Page hit: reference to VM word that is in physical memory
• Page fault: reference to VM word that is not in physical memory

Page fault is also an exception and handled by:

1. Page fault handler selects a victim to be evicted.
2. If victim is modified, the kernel copies it back to disk.
3. Update victim PTE: point virtual memory, change valid bit.
4. Kernel copies referenced page from disk to physical memory,

and update PTE: point physical memory, change valid bit
5. Handler returns. It restarts the faulting instruction, which re-

sends the faulting virtual address to the address translation hard-
ware. But now it is cached in main memory, so page hit.

Waiting until the miss to copy the page to DRAM is known as
demand paging.

3.3.5 Allocating pages

When OS allocates new page of VM, e.g., as a result of malloc,
VP is allocated by creating room on disk and updating PTE to
point the created page on disk.

3.3.6 Locality to the rescue!

Will the large miss penalties destroy the program performance?
Although the total number of pages that program references during
an entire run might exceed the physical memory, the program will
tend to work on smaller set of active pages known as the working
set or resident set. After an initial overhead where the working
set is paged to the memory, subsequent references to the working
set will result in hits. However, if the working set size exceeds the
size of physical memory, then the program will cause thrashing,
where pages are swapped in and out continuously.

3.4 VM as a tool for memory management
OS provide a separate page table, and thus a separate virtual ad-
dress space, for each process. Note that multiple VPs can be
mapped to the same shared PP. The combination of demand pag-
ing and separate virtual address spaces has a profound impact on
memory management:

• Simplifying linking. Each program has similar virtual address
space. Code, data, and heap always start at the same addresses
• Simplify loading

3.5 VM as a tool for memory protection
PTE can be extended with additional permission bits, so that MMU
can check these bits on each access.

3.6 Address translation
Say virtual address space V = {0, · · · ,N − 1}, physical address
space P = {0, · · · ,M − 1}, address translation is the mapping
MAP : V → P ∪ {∅}.

3.6.1 Address translation with a page table

The n-bit virtual address has two components: a p-bit VP offset
(VPO) and an (n − p)-bit VP number (VPN). A control register in
CPU, page table base register (PTBR) points to the current page
table. The MMU adds VPN to PTBR to get PTE address (PTEA).

• If page hit, the corresponding physical address (PA) is the con-
catenation of the PP number (PPN) from PTE and VPO.
• If page fault, i.e., valid bit is zero, MMU triggers page fault

exception. See 3.3.4.

3.6.2 Integrating VM and cache

Consider L1 cache in CPU chip. If there’s PTEA or PA hit, get it
from L1 cache. If miss, get it from memory, and store in L1 cache.

3.6.3 Speeding up translation with a TLB

Let’s eliminate even the cost looking L1 cache by including a
small cache of PTEs in MMU called a translation lookaside buffer
(TLB). TLB maps VPN to PPN instead of storing a whole PTE.
VPN is consisted of t-bits TLB index (TLBI) and TLB tag (TLBT).
TLB is consisted of multiple sets containing the tag and PTE.
TLBI decides the set and compare TLBT with the tags in the set.

3.6.4 Multi-level page tables

Suppose a 4KB (212) page size, 48-bit address space, and 8-byte
PTE. Then we will need 248−12 × 23 = 239 bytes!

→ Multi-level page table. Consequently, multiple VPNs. For ex-
ample, level-1 table points to a level-2 table. Level-2 table points
to a page. Since most of the level-2 table would be empty, most of
the level-1 table would be null. So, most of the level-2 tables are
not allocated. Usually the number of levels is 4.

System Programming Fall 2022 � haewonc

4 Malloc

4.1 Dynamic memory allocation
Dynamic memory allocators manage an area of process VM known
as heap. Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free.

• Explicit allocator: application allocates and frees space
• Implicit allocator: application allocates, but does not free space,

e.g., garbage collection in Java

4.1.1 The malloc package

void *malloc(size_t size)

• Successful: Returns a pointer to a memory block of at least size
bytes aligned to 16-byte (x86-64). If size==0, returns NULL
• Unsuccessful: Returns NULL and sets errno

void free(void *p)

• Returns the block pointed at by p
• p must come from a previous call to malloc or realloc

Other functions are:

• realloc: changes the size of a previously allocated block
• sbrk: used internally by allocators to grow or shrink the heap

4.2 Performance goals
• Handling arbitrary request sequences
• Making immediate responses to requests
• Using only the heap
• Aligning blocks (alignment requirement)
• Not modifying allocated blocks

Within the constraints, an allocator attempts to meet the often con-
flicting performance goals:

• Throughput: number of request it completes per unit time

• Memory utilization: peak utilization Uk =
maxi≤k Pi

Hk
where

Hk denote the current size of the heap and Pi denote the sum of
payloads of currently allocated blocks

4.2.1 Fragmentation

Poor memory utilization is caused by fragmentation.

4.2.2 Internal fragmentation

Occurs if payload is smaller than block size. It is caused by

• Overhead of maintaining heap data structures
• Padding for alignment
• Explicit policy decisions

It depends on pattern of previous requests, so is easy to measure.

4.2.3 External fragmentation

Occurs when there is enough heap memory, but no single free bock
is large enough. It depends on pattern of future requests, so is hard
to measure.

4.3 Implementation
4.3.1 Knowing how much to free

Use header/footer to keep the length of the block.

4.3.2 Keeping track of free blocks

• Implicit list using length: links all blocks
• Explicit list: links free blocks using pointers
• Segregated free list: different free lists for different size classes
• Block sorted by size: balanced tree

4.4 Implicit list
Header and footer (boundary tags) indicates size and tag. Footer
allows a bidirectional coalescing.

4.4.1 Finding a free block (placement policy)

• First fit: Search list from beginning, choose first that fits
– Can take linear time in total number of blocks
– Cause splinters at beginning of list
• Next fit: First fit, search starts where previous search finished

– Faster than first fit: avoid re-scanning
– Fragmentation is worse
• Best fit: fits with the fewest bytes left over

– Keep fragments small: higher memory utilization
– Typically slower than first fit

4.4.2 Allocating in free block

Split the remaining space when allocating free block.

4.4.3 Freeing a block

Only clearing tag leads to false fragmentation→ Coalescing!

• Immediate coalescing: coalesce each time freeing
• Deferred coalescing: coalesce when the amount of external frag-

mentation reaches some threshold

4.5 Explicit list
Include next, prev pointers after header tag. Maintain the list of
free blocks. Only free blocks, so we can use payload area.

4.5.1 Insertion policy

Where in the free list do you put a newly freed block?

• LIFO: beginning of the free list
– Pro: simple and constant time
– Con: fragmentation
• Address-ordered policy: blocks are always in address order

– Pro: lower fragmentation
– Con: require search

4.6 Segregated free list
Each size class of blocks has its own free list. Separate classes for
each small size, two-power size classes for larger sizes.

• Higher throughput
• Better memory utilization: First-fit search of segregated free list

approximates a best-fit search of entire heap.

4.6.1 Allocating

1. Search appropriate free list
2. If an appropriate block is found: split block and place fragmen-

tation on appropriate list
3. If no block is found, try next larger class

If no block is found, request heap memory from OS using sbrk().
Extend chunk size, and put remaining free block to appropriate
list.

4.6.2 Freeing

Coalesce and place on appropriate list.

Cost Implicit Explicit Segregated

Allocate Linear to all Linear to free Log time
Free Constant Constant Constant

Memory Depends Better Best

Table 7. Comparison on allocators

System Programming Fall 2022 � haewonc

5 System-level I/O

5.1 Unix I/O
A Linux file is a sequence of bytes. All I/O devices, even the
kernel, are represented as files. Mapping of files to devices allows
kernel to export simple interface called Unix I/O:

• Opening and closing files: open(), close()
• Reading and writing a file: read(), write()
• Changing the current file position (seek): lseek()

5.1.1 File types

Each file has a type indicating its role in the system.

• Regular file: Contains arbitrary data
– Text files are with only ASCII or Unicode character. Text file

is a sequence of text lines, terminated by newline char (0xa).
– Binary files are everything else.
– Kernel doesn’t know the difference!
• Directory: Index for a related group of files

– Consists of an array of links mapping a filename to a file
– Contains at least two entries: link to itself (.), and link to the

parent directory (..)
• Socket: For communicating with a process on another machine

5.1.2 Directory hierarchy

All files are organized as a hierarchy anchored by root directory
named / (slash). Kernel maintains current working directory (cwd)
for each process. Locations of files in hierarchy are denoted by
pathnames.

• Absolute: path from root and starts with /
• Relative: path from cwd

5.1.3 Opening and closing files

Opening/closing a file informs the kernel that you are ready/fin-
ished accessing that file. open returns a identifying integer file
descriptor. fd==-1 indicates that an error occurred.

1 int fd; /* file descriptor */
2 if ((fd = open("/etc/hosts", O_RDONLY)) < 0) exit(1);
3 int retval; /* return value */
4 if ((retval = close(fd)) < 0) exit(1);

Each process created by a Linux shell begins life with three open
files associated with a terminal:

• 0: standard input (stdin)
• 1: standard output (stdout)
• 2: standard error (stderr)

5.1.4 Reading and writing files

Reading/writing a file copies bytes CFP→memory/memory→CFP,
and then updates file position. Writing a file copies bytes from
memory to the current file position, and then updates file position.
Returns a number of bytes read/written. nbytes<0 indicates that
an error occurred.

1 char buf[512];
2 int fd;
3 int nbytes;
4 if ((nbytes = read(fd, buf, sizeof(buf))) < 0) exit(1);
5 if ((nbytes = write(fd, buf, sizeof(buf)) < 0) exit(1);

Short counts (nbytes < sizeof(buf)) are possible and are not er-
rors. Short count can occur when encountering EOF on reads,
reading from terminal, or reading and writing network sockets.
But never occur when reading and writing from disk files.

5.1.5 Example

1 int main(void) {
2 char c;
3 while(Read(STDIN_FILENO, &c, 1) != 0)
4 Write(STDOUT_FILENO, &c, 1);
5 exit(0);
6 }

5.2 Metadata
Metadata is data about data. Per-file metadata maintained by ker-
nel. Users can access with the stat and fstat functions.

5.3 File sharing

Figure 24. How the kernel represents open files
File sharing is two distinct descriptors sharing the same disk file
through two distinct open file table entries, e.g., by open twice.

Processes share files using same open file table entries. A child
process inherits parent’s open files. After fork, child process’s
descriptor table is same as parent’s, and refcnts are incremented.

5.3.1 I/O redirection

Linux shells provide I/O redirection operators that allow users to
associate standard input and output with disk files. For example,
ls > foo.txt causes the shell to load and execute the ls program,
with standard output redirected to disk file foo.txt.

Shell implement it by calling dup2(oldfd, newfd) function. It
copies per-process descriptor table entry oldfd to entry newfd.

1. Open file to which stdout should be redirected. Happens in
child executing shell code, before exec.

2. Call dup2. Change refcnt accordingly.

Figure 25. I/O redirection

5.4 Standard I/O
C standard library libc.so contains a collection of higher-level
standard I/O functions.

• Opening and closing files: fopen, fclose
• Reading and writing bytes: fread, fwrite
• Reading and writing text lines: fgets, fputs
• Formatted reading and writing: fscanf, fprintf

5.4.1 Streams

Standard I/O models open files as streams, abstraction for a file
descriptor and a buffer in memory. C programs begin life with
three open streams: stdin, stdout, and stderr.

System Programming Fall 2022 � haewonc

Unix I/O Standard I/O

Pros
Most general and lowest overhead Buffering increases efficiency by reducing system calls
Provides functions for accessing metadata Short counts automatically handled
Async-signal-safe and can be used safely in signal handlers

Cons
Dealing with short counts is tricky No functions for accessing metadata
No buffering→ Lower efficiency Not asnyc-signal-safe, not appropriate for signal handlers

Not appropriate for I/O in network sockets

Table 8. Comparison on I/O

1 #include <stdio.h>
2 extern FILE *stdin;
3 extern FILE *stdout;
4 extern FILE *stderr;
5 int main() {
6 fprintf(stdout, "Hello, world\n");
7 }

5.4.2 Buffered I/O

Applications often read/write one character at a time. Implement-
ing as Unix I/O calls is expensive. Solution is buffered read.

• Use Unix read to grab block of bytes
• User input functions take one byte at a time from buffer
• Refill buffer when empty

Buffer is flushed to output fd on newline char, call to fflush, exit,
or return from main.

Figure 26. Buffered write

6 Network programming

6.1 A client-server transaction

6.2 Computer netwroks
A network is a hierarchical system of boxes and wires organized
by geographical proximity.

• LAN (local area network): spans a building or campus
• WAN (wide area network): spans country or world

An internetwork (internet) is an interconnected set of networks.
The Global IP Internet (uppercase “I”) is the unique and united
form of an internet (lowercase “i”).

6.2.1 Internet protocol

Protocol is set of rules of how hosts and routers should cooperate
when they transfer data from network to network. Internet proto-
col defines:

• Naming scheme. Defines a uniform format of host address.
• Delivery mechanism. Defines a standard transfer unit (packet)

consisting of header and payload.
– Header: contains info such as packet size, source and desti-

nation address
– Payload: contains data bits sent from source host

6.2.2 Global IP Internet

Based on TCP/IP protocol family.

• IP (internet protocol): Provides basic naming scheme and unre-
liable delivery of packets (datagrams) from host-to-host
• UDP (unreliable datagram protocol): Uses IP to provide unreli-

able datagram delivery from process-to-process
• TCP (transmission control protocol): Uses IP to provide reliable

byte streams from process-to-process over connections

Via a mix of Unix file I/O and functions from sockets interface.

6.2.3 Hardware and software organization of an internet

System Programming Fall 2022 � haewonc

6.3 Programmer’s view of the Internet
6.3.1 IP address

Hosts are mapped to a set of 32-bit IP addresses

• Stored in an IP address struct
• Always stored in memory in network byte order (big-endian)
• Dotted decimal notation: each byte in address is represented by

its decimal value and separated by a period

6.3.2 Domain naming system (DNS)

The set of IP addresses is mapped to a set of identifiers called
Internet domain names in DNS.

• Each host has a locally defined domain name localhost which
always maps to the loopback address 127.0.0.1
• Use hostname to determine real domain name of local host
• Mapping is many-to-many

6.3.3 Connection

Clients and servers communicate by sending streams of bytes over
connections. Each connection is:

• Point-to-point: connects a pair of processes
• Full-duplex: data can flow in both directions at the same time
• Reliable: stream of bytes sent by the source is eventually re-

ceived by the destination in the same order it was sent

A socket is endpoint of a connection. Socket address is an IPad-
dress:port pair. A port is a 16-bit integer that identifies a process.

• Ephemeral port: Assigned automatically by client kernel when
client makes a connection request.
• Well-known port: Associated with service provided by a server

Popular services have permanently assigned well-known ports and
corresponding well-known service names:

• echo server: 7/echo
• ssh servers: 22/ssh
• email server: 25/smtp
• Web servers: 80/http

A connection is uniquely identified by the socket addresses of its
endpoints (socket pair).

Figure 27. 51213 is an ephemeral port allocated by the kernel.

6.4 Socket
To the kernel, a socket is an endpoint of communication. To an
application, a socket is a file descriptor that lets the application
read/write from/to the network (networks are modeled as files!).
Clients and servers communicate with each other by reading from
and writing to socket descriptors. The main distinction between
regular file I/O and socket I/O is how the application opens the
socket descriptors.

6.4.1 Socket address structures

Generic socket address:

1 struct sockaddr {
2 uint16_t sa_family; /* Protocol family */
3 char sa_data[14]; /* Address data. */
4 };

Internet-specific socket address:

1 struct sockaddr_in {
2 uint16_t sin_family; /* Protocol family (always AF_INET

) */
3 uint16_t sin_port; /* Port num in network byte order */
4 struct in_addr sin_addr; /* IP addr in network byte

order */
5 unsigned char sin_zero[8]; /* Pad to sizeof(struct

sockaddr) */
6 };

Must cast to (struct sockaddr *) for functions that take socket
address arguments.

6.5 Sockets interface

6.5.1 getaddrinfo

Convert strings of hostnames, host addresses, ports, and service
names to socket address structures.

1 int getaddrinfo(const char *host, // Hostname or address
2 const char *service, // Port or service name
3 const struct addrinfo *hints, // Input params
4 struct addrinfo **result); // Output linked list

Given host and service, getaddrinfo returns result that points to
a linked list of addrinfo structs, each of which points to a corre-
sponding socket address struct, and which contains arguments for
the sockets interface functions.

Each addrinfo struct returned by getaddrinfo contains arguments
that can be passed directly to socket function. Also points to a
socket address struct that can be passed directly to connect and
bind functions.

Clients walk the list, trying each socket address in turn, until the
calls to socket and connect succeed. Servers walk the list until
calls to socket and bind succeed.

6.5.2 getnameinfo

getnameinfo is the inverse of getaddrinfo, converting a socket
address to the corresponding host and service.

System Programming Fall 2022 � haewonc

6.5.3 socket

int socket(int domain, int type, int protocol)

Clients and servers use the socket function to create a socket de-
scriptor. It is protocol specific. Use getaddrinfo to generate the
parameters automatically, so that code is protocol independent.

6.5.4 bind

int bind(int sockfd, SA *addr, socklen_t addrlen);

A server uses bind to ask the kernel to associate the server’s socket
address with a socket descriptor. Use getaddrinfo to supply pa-
rameters.

6.5.5 listen

int listen(int sockfd, int backlog);

By default, kernel assumes that descriptor from socket function is
an active socket that will be on the client end of a connection. A
server calls the listen function to tell the kernel that a descriptor
will be used by a server rather than a client. It converts sockfd
from an active socket to a listening socket that can accept connec-
tion requests from clients.

6.5.6 accept

int accept(int listenfd, SA *addr, int *addrlen);

Servers wait for connection requests from clients by calling ac-
cept. Returns a connected descriptor that can be used to commu-
nicate with the client via Unix I/O routines.

6.5.7 connect

int connect(int clientfd, SA *addr, socklen_t addrlen);

A client establishes a connection with a server by calling connect.
If successful, then clientfd is now ready for reading and writing.

6.5.8 Listening vs. connected descriptors

• Listening: Created once and exists for lifetime of the server.
End point for client connection requests.
• Connected: End point of the connection between client and

server
• New descriptor is created each time the server accepts a con-

nection request from a client

6.5.9 Example

Helpers
1 int open_clientfd(char *hostname, char *port) {
2 int clientfd;
3 struct addrinfo hints, *listp, *p;
4 // Get a list of potential server addresses
5 memset(&hints, 0, sizeof(struct addrinfo));
6 hints.ai_socktype = SOCK_STREAM; // Open a connection
7 hints.ai_flags = AI_NUMERICSERV; // using numeric port
8 hints.ai_flags |= AI_ADDRCONFIG;
9 Getaddrinfo(hostname, port, &hints, &listp);

10 // Walk the list for one that we can successfully connect to
11 for (p = listp; p; p = p->ai_next) {
12 /* Create a socket descriptor */
13 if ((clientfd = socket(p->ai_family, p->ai_socktype, p->

ai_protocol)) < 0) continue; // failed, try next
14 /* Connect to the server */
15 if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)
16 break; // Success
17 Close(clientfd); // Connect failed, try another
18 }
19 Freeaddrinfo(listp); // Clean up
20 if (!p) return -1;
21 else return clientfd;
22 }
23 int open_listenfd(char *port) {
24 struct addrinfo hints, *listp, *p;
25 int listenfd, optval=1;

26 /* Get a list of potential server addresses */
27 memset(&hints, 0, sizeof(struct addrinfo));
28 hints.ai_socktype = SOCK_STREAM; // Accept connect.
29 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; // any addr
30 hints.ai_flags |= AI_NUMERICSERV; // using port no.
31 Getaddrinfo(NULL, port, &hints, &listp);
32 /* Walk the list for one that we can bind to */
33 for (p = listp; p; p = p->ai_next) {
34 /* Create a socket descriptor */
35 if ((listenfd = socket(p->ai_family, p->ai_socktype, p->

ai_protocol)) < 0) continue; // failed, try next
36 // Eliminates "Address already in use" error from bind
37 Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, (const

void *)&optval, sizeof(int));
38 /* Bind the descriptor to the address */
39 if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)
40 break; /* Success */
41 Close(listenfd); /* Bind failed, try the next */
42 }
43 Freeaddrinfo(listp); // Clean up
44 if (!p) return -1;
45 // Make it a listening socket ready to accept conn. requests
46 if (listen(listenfd, LISTENQ) < 0) {
47 Close(listenfd); return -1; }
48 return listenfd;
49 }

echoclient.c
1 int main(int argc, char **argv) {
2 int clientfd;
3 char *host, *port, buf[MAXLINE];
4 rio_t rio;
5 host = argv[1];
6 port = argv[2];
7 clientfd = Open_clientfd(host, port);
8 Rio_readinitb(&rio, clientfd);
9 while (Fgets(buf, MAXLINE, stdin) != NULL) {

10 Rio_writen(clientfd, buf, strlen(buf));
11 Rio_readlineb(&rio, buf, MAXLINE);
12 Fputs(buf, stdout);
13 }
14 Close(clientfd);
15 exit(0);
16 }

echoserveri.c
1 void echo(int connfd);
2 int main(int argc, char **argv) {
3 int listenfd, connfd;
4 socklen_t clientlen;
5 struct sockaddr_storage clientaddr; // Enough room for any
6 char client_hostname[MAXLINE], client_port[MAXLINE];
7 listenfd = Open_listenfd(argv[1]);
8 while (1) {
9 clientlen = sizeof(struct sockaddr_storage);

10 connfd = Accept(listenfd, (SA*)&clientaddr, &clientlen);
11 Getnameinfo((SA *)&clientaddr, clientlen,

client_hostname, MAXLINE, client_port, MAXLINE, 0);
12 printf("Connected to (%s, %s)\n", client_hostname,

client_port);
13 echo(connfd);
14 Close(connfd);
15 }
16 exit(0);
17 }

echo.c
1 void echo(int connfd) {
2 size_t n;
3 char buf[MAXLINE];
4 rio_t rio;
5 Rio_readinitb(&rio, connfd);
6 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
7 printf("server received %d bytes\n", (int)n);
8 Rio_writen(connfd, buf, n);
9 }

10 }

System Programming Fall 2022 � haewonc

6.5.10 Testing servers using telnet

linux> telnet <host> <portnumber>

The telnet program is invaluable for testing servers that transmit
ASCII strings over Internet connections

6.6 Web servers
Clients and servers communicate using the HyperText Transfer
Protocol (HTTP).

1. Client and server establish TCP connection
2. Client requests content
3. Server responds with requested content
4. Client and server close connection (eventually)

6.6.1 Web content

Web servers return content to clients, a sequence of bytes with an
associated MIME (Multipurpose Internet Mail Extensions) type,
e.g., HTML, and PNG. The content returned in HTTP responses
can be either static or dynamic.

• Static: stored in files and retrieved in response to HTTP request
• Dynamic: produced on-the-fly in response to HTTP request

6.6.2 URLs

Unique name for a file: URL (Universal Resource Locator).

http://www.cmu.edu:80/index.html

• Clients use prefix (http://www.cmu.edu:80) to infer protocol,
where the server is, and port
• Servers use suffix (/index.html) to determine if request is for

static or dynamic content

6.6.3 HTTP requests

HTTP request is a request line followed by zero or more request
headers.

Request line: <method> <uri> <version>

• <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE
• <uri> is typically URL for proxies, URL suffix for servers
• <version> is HTTP version of request

Request headers: <header name>: <header data>

6.6.4 HTTP responses

HTTP response is a response line followed by zero or more re-
sponse headers, possibly followed by content, with blank line sep-
arating headers from content.

Response line: <version> <status code> <status msg>

• <version> is HTTP version of the response
• <status code> is numeric status
• <status msg> is text: OK, Moved, or Not found

Response headers: <header name>: <header data>

6.7 Tiny web server
6.7.1 Tiny operations

• Accept connection from client
• Read request from client (via connected socket)
• Split into <method> <uri> <version>
• If <method> is not GET, then return error
• If URI contains cgi-bin then serve dynamic content
• Otherwise serve static content

Figure 28. Serving dynamic content

6.7.2 Serving static content

1 void serve_static(int fd, char *filename, int filesize)
{

2 int srcfd;
3 char *srcp, filetype[MAXLINE], buf[MAXBUF];
4 /* Send response headers to client */
5 get_filetype(filename, filetype);
6 sprintf(buf, "HTTP/1.0 200 OK\r\n");
7 sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);
8 sprintf(buf, "%sConnection: close\r\n", buf);
9 sprintf(buf, "%sContent-length: %d\r\n", buf,

filesize);
10 sprintf(buf, "%sContent-type: %s\r\n\r\n", buf,

filetype);
11 Rio_writen(fd, buf, strlen(buf));
12 /* Send response body to client */
13 srcfd = Open(filename, O_RDONLY, 0);
14 srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE,

srcfd, 0);
15 Close(srcfd);
16 Rio_writen(fd, srcp, filesize);
17 Munmap(srcp, filesize);
18 }

6.7.3 Serving dynamic content

1. The server creates a child process and runs the program identi-
fied by the URI in that process

2. The child runs and generates the dynamic content
3. The server captures the content of the child and forwards it

without modification to the client

Common Gateway Interface (CGI) defines a simple standard for
transferring information between the client (browser), the server,
and the child process. Because the children are written according
to the CGI spec, they are often called CGI programs.

http://add.com/cgi-bin/adder?15213&18213

• adder is the CGI program on the server that will do the addition
• argument list starts with ?
• arguments separated by &
• spaces represented by + or %20

Server pass the arguments to child in environment variable QUERY_STRING.
For example, QUERY_STRING = “15213&18213”

Child generates output on stdout. Server uses dup2 to redirect it
to its connected socket.

1 void serve_dynamic(int fd, char *filename, char *cgiargs)
{

2 char buf[MAXLINE], *emptylist[] = { NULL };
3 /* Return first part of HTTP response */
4 sprintf(buf, "HTTP/1.0 200 OK\r\n");
5 Rio_writen(fd, buf, strlen(buf));
6 sprintf(buf, "Server: Tiny Web Server\r\n");

System Programming Fall 2022 � haewonc

7 Rio_writen(fd, buf, strlen(buf));
8 if (Fork() == 0) { /* Child */
9 /* Real server would set all CGI vars here */

10 setenv("QUERY_STRING", cgiargs, 1);
11 Dup2(fd, STDOUT_FILENO); /* Redirect stdout to

client */
12 Execve(filename, emptylist, environ); /* Run CGI

program */
13 }
14 Wait(NULL); /* Parent waits for and reaps child */
15 }

Figure 29. Dynamic content result

7 Concurrent programming

7.1 Iterative servers
Iterative servers process one request at a time.

Figure 30. Fundamental flaw of iterative servers. Server waits until
client 1 is closed.

Solution: use concurrent servers instead! Allow server to handle
multiple clients simultaneously.

7.2 Process-based concurrent server
Spawn separate process for each client.

• Kernel automatically interleaves multiple logical flows
• Each flow has its own private address space

1 int main(int argc, char **argv) {
2 int listenfd, connfd;
3 int port = atoi(argv[1]);
4 struct sockaddr_in clientaddr;
5 int clientlen=sizeof(clientaddr);
6 signal(SIGCHLD, sigchld_handler);
7 listenfd = open_listenfd(port);
8 while (1) {
9 connfd = accept(listenfd, (SA *) &clientaddr, &

clientlen);
10 if (fork() == 0) {
11 close(listenfd); // Child closes its listening

socket
12 }
13 echo(connfd); // Child services client
14 close(connfd); // Child closes connection with

client
15 exit(0); // Child exits
16 Close(connfd); // Parent closes connected socket

(important!)
17 }
18 }
19 /* Listening server process must reap zombie children to

avoid fatal memory leak */
20 void sigchld_handler(int sig) {
21 while (waitpid(-1, 0, WNOHANG) > 0) ;
22 return;
23 }

7.2.1 Pros and cons

• + Handle multiple connections concurrently
• + Clean sharing model
• + Simple and straightforward
• – Additional overhead for process control
• – Nontrivial to share data between processes

7.3 Thread-based concurrent server
Multiple threads can be associated with a process.

• Each thread has its own logical control flow
• Each thread shares the same code, data, and kernel context
• Share common virtual address space
• Each thread has its own thread id (TID)

Two threads are (logically) concurrent if their flows overlap in
time. Otherwise, they are sequential. True concurrency is only
possible in multi-core processor.

7.3.1 Threads vs. Processes

Threads share code and some data. Processes (typically) do not.
Threads are less expensive than processes.

7.3.2 Posix threads (Pthreads) interface

Standard interface for functions that manipulate threads from C.

• Creating and reaping threads: pthread_create(), pthread_join()
• Determining your thread ID: pthread_self()
• Terminating threads: pthread_cancel(), pthread_exit(), exit()

(terminates all threads), RET (terminates current thread)

System Programming Fall 2022 � haewonc

1 void *thread(void *vargp) {
2 printf("Hello, world!\n");
3 return NULL;
4 }
5 int main() {
6 pthread_t tid;
7 Pthread_create(&tid, NULL, thread, NULL);

Pthread_join(tid, NULL);
8 exit(0);
9 }

Spawn new thread for each client.

1 int main(int argc, char **argv) {
2 int port = atoi(argv[1]);
3 struct sockaddr_in clientaddr;
4 int clientlen = sizeof(clientaddr); pthread_t tid;
5 int listenfd = open_listenfd(port);
6 while (1) {
7 int *connfdp = malloc(sizeof(int));
8 *connfdp = accept(listenfd, (SA *) &clientaddr, &

clientlen);
9 pthread_create(&tid, NULL, echo_thread, connfdp);

10 }
11 }
12 void *echo_thread(void *vargp) {
13 int connfd = *((int *)vargp); pthread_detach(

pthread_self());
14 free(vargp);
15 echo(connfd);
16 close(connfd);
17 return NULL;
18 }

7.3.3 Pros and cons

• + Easy to share data structures between threads
• + Threads are more efficient than processes
• – Unintentional sharing

7.3.4 Unintended sharing

8 Synchronization

8.1 Sharing
Say variable x is shared if and only if multiple threads reference
instance of x. Which variables in threaded C program are shared?

8.1.1 Threads memory model: Conceptual model

• Multiple threads run within the same context of a single process
• Each thread has its own separate thread context

This model is not strictly enforced. Any thread can read and write
the stack of any other thread.

8.1.2 Mapping variable instances to memory

• Global/Local static variable: VM contains exactly one instance
• Local variables: Each thread stack contains one instance

ptr, cnt, msgs are shared but i, myid are not shared.

8.2 Mutual exclusion
8.2.1 Improper synchronization example

System Programming Fall 2022 � haewonc

Incorrect ordering: two threads increment the counter, but the re-
sult is 1 instead of 2.

8.2.2 Process graphs

A progress graph depicts the discrete execution state space of con-
current threads. Each axis corresponds to the sequential order of
instructions in a thread. Each point corresponds to a possible ex-
ecution state. A trajectory is a sequence of legal state transitions
that describes one possible concurrent execution of the threads.

Figure 31. L, U, and S form a critical section with respect to the
shared variable cnt.

To enforce safe trajectory, we must need to guarantee mutually
exclusive access to critical regions.

8.3 Semaphores
Semaphore is non-negative global integer synchronization vari-
able. It is manipulated by:

• P(s): [while (s == 0) wait(); s–;] (test)
• V(s): [s++;] (increment)

OS kernel guarantees that operations between [] are executed in-
divisibly: Only one P or V operation at a time can modify s.

8.3.1 Proper synchronization

• Binary semaphore: semaphore whose value is always 0 or 1
• Mutex: binary semaphore used for mutual exclusion

– P operation: locking the mutex
– V operation: unlocking the mutex

1 int sem_init(sem_t *sem, 0, unsigned int val);}
2 int sem_wait(sem_t *s); // P(s)
3 int sem_post(sem_t *s); // V(s)
4 void P(sem_t *s); // Wrapper fuc for sem_wait void V(

sem_t *s); /. Wrapper func for sem_post
5

6 volatile int cnt = 0; // Counter
7 sem_t mutex; // Semaphore that protects cnt
8 sem_init(&mutex, 0, 1); // mutex = 1
9

10 /* Surround critical section with P and V */
11 for (i = 0; i < niters; i++) {
12 P(&mutex);
13 cnt++;
14 V(&mutex);
15 }

Semaphore creates a forbidden region that encloses unsafe region
that cannot be entered by any trajectory.

9 Attack Lab

9.1 Buffer overflow
When exceeding the memory size allocated for an array. It can
cause security vulnerabilities.

Vulnerable buffer example

1 void echo(){
2 char buf[4]; // Way too small!
3 gets(buf); // Runs until EOF so no way to specify

limit on number of characters
4 puts(buf); }
5 void call_echo() {
6 echo(); }

Figure 32. Buffer overflowed and corrupted the return pointer.
Buffer overflow can corrupt the return pointer and may corrupt
state (cause segmentation fault) or cause undesired action.

9.1.1 Code injection attack

Return address can be corrupted to point exploit code. To prevent,

• Avoid vulnerabilities in code. Use methods that limits string
lengths, e.g., fgets, strncpy instead of gets, strcpy.
• System-level protections. At the start of the program, allocate

random amount of space on stack, making difficult for hacker
to predict the beginning of the inserted code.
• Non-executable code segments. Mark stack as non-executable.
• Stack canaries. Place special value beyond buffer and check

for corruption before exiting function. Add -fstack-protector.

Figure 33. Disassembly of canary.

9.2 Code injection attack
Set return address to the address of touch1.

1. disas getbuf to see how much rsp is decreased
2. Get the start address of function by disas touch1
3. Put bytes to fill the size, and then put the start address of func-

tion in little endian (gh ef cd ab 00 00 00 00)

Set the assembly operations in bytes in the return address.

1 pushq $touch2 address$
2 movq $COOKIE$, %rdi
3 retq

System Programming Fall 2022 � haewonc

10 Shell Lab
1 /* Misc manifest constants */
2 #define MAXLINE 1024 /* max line size */
3 #define MAXARGS 128 /* max args on a command line */
4 #define MAXJOBS 16 /* max jobs at any point in time */
5 #define MAXJID 1 << 16 /* max job ID */
6

7 /* Job states */
8 #define UNDEF 0 /* undefined */
9 #define FG 1 /* running in foreground */

10 #define BG 2 /* running in background */
11 #define ST 3 /* stopped */
12

13 /*
14 * Jobs states: FG (foreground), BG (background), ST (stopped)
15 * Job state transitions and enabling actions:
16 * FG -> ST : ctrl-z
17 * ST -> FG : fg command
18 * ST -> BG : bg command
19 * BG -> FG : fg command
20 * At most 1 job can be in the FG state.
21 */
22

23 /* Global variables */
24 extern char **environ; /* defined in libc */
25 char prompt[] = "tsh> "; /* command line prompt */
26 int nextjid = 1; /* next job ID to allocate */
27 char sbuf[MAXLINE]; /* for composing sprintf messages */
28

29 struct job_t
30 { /* The job struct */
31 pid_t pid; /* job PID */
32 int jid; /* job ID [1, 2, ...] */
33 int state; /* UNDEF, BG, FG, or ST */
34 char cmdline[MAXLINE]; /* command line */
35 };
36 struct job_t jobs[MAXJOBS]; /* The job list */
37 /* End global variables */
38

39 /* Function prototypes */
40 void eval(char *cmdline);
41 int builtin_cmd(char **argv);
42 void do_bgfgkl(char **argv);
43 void do_export(char **argv);
44 void waitfg(pid_t pid);
45

46 void sigchld_handler(int sig);
47 void sigtstp_handler(int sig);
48 void sigint_handler(int sig);
49

50 /* Safe API print functions for signal handler */
51 ssize_t sio_puts(char s[]);
52 ssize_t sio_putl(long v);
53 void sio_error(char s[]);
54

55 /* Here are helper routines */
56 int parseline(const char *cmdline, char **argv);
57 void sigquit_handler(int sig);
58

59 void clearjob(struct job_t *job);
60 void initjobs(struct job_t *jobs);
61 int maxjid(struct job_t *jobs);
62 int addjob(struct job_t *jobs, pid_t pid, int state, char *

cmdline);
63 int deletejob(struct job_t *jobs, pid_t pid);
64 pid_t fgpid(struct job_t *jobs);
65 struct job_t *getjobpid(struct job_t *jobs, pid_t pid);
66 struct job_t *getjobjid(struct job_t *jobs, int jid);
67 int pid2jid(pid_t pid);
68 void listjobs(struct job_t *jobs);
69

70 void unix_error(char *msg);
71 void app_error(char *msg);
72 typedef void handler_t(int);
73 handler_t *Signal(int signum, handler_t *handler);
74

75

76

77

78

79 /* The shell’s main routine */
80 int main(int argc, char **argv)
81 {
82 char c;
83 char cmdline[MAXLINE];
84 int emit_prompt = 1; /* emit prompt (default) */
85

86 /* Install the signal handlers */
87 Signal(SIGINT, sigint_handler); /* ctrl-c */
88 Signal(SIGTSTP, sigtstp_handler); /* ctrl-z */
89 Signal(SIGCHLD, sigchld_handler); /* Terminated or stopped

child */
90 Signal(SIGQUIT, sigquit_handler);
91

92 /* Initialize the job list */
93 initjobs(jobs);
94

95 /* Execute the shell’s read/eval loop */
96 while (1)
97 {
98 /* Read command line */
99 if (emit_prompt) {

100 printf("%s", prompt);
101 fflush(stdout);
102 }
103 if ((fgets(cmdline, MAXLINE, stdin) == NULL) && ferror(

stdin))
104 app_error("fgets error");
105 if (feof(stdin)) { /* End of file (ctrl-d) */
106 fflush(stdout);
107 exit(0);
108 }
109 /* Evaluate the command line */
110 eval(cmdline);
111 fflush(stdout);
112 fflush(stdout);
113 }
114 exit(0); /* control never reaches here */
115 }
116

117 /* eval - Evaluate the command line that the user has just typed
in. If the user has requested a built-in command (quit,
jobs, bg or fg) then execute it immediately. Otherwise,
fork a child process and run the job in the context of the
child. If the job is running in the foreground, wait for it
to terminate and then return. Note: each child process
must have a unique process group ID so that our background
children don’t receive SIGINT (SIGTSTP) from the kernel
when we type ctrl-c (ctrl-z) at the keyboard. */

118 void eval(char *cmdline)
119 {
120 char *argv[MAXARGS];
121 char buf[MAXLINE];
122 int bg;
123 pid_t pid;
124

125 strcpy(buf, cmdline);
126 bg = parseline(buf, argv);
127 if(!builtin_cmd(argv)){
128 sigset_t mask, prev;
129 sigemptyset(&mask);
130 sigaddset(&mask, SIGCHLD);
131 sigprocmask(SIG_BLOCK, &mask, &prev); // block SIGCHLD
132 if((pid = fork()) == 0){ // child process
133 setpgid(0, 0);
134 sigprocmask(SIG_SETMASK, &mask, NULL); // unblock

SIGCHLD
135 if (execve(argv[0], argv, environ) < 0) {
136 printf("%s: Command not found\n", argv[0]);
137 exit(1);
138 }
139 }
140 // parent process
141 addjob(jobs, pid, bg ? BG : FG, cmdline);
142 sigprocmask(SIG_SETMASK, &prev, NULL); // unblock

SIGCHLD
143 if(!bg) waitfg(pid);
144 else printf("[%d] (%d) %s", pid2jid(pid), pid, cmdline);
145 }
146 return;
147 }

System Programming Fall 2022 � haewonc

148 /* parseline - Parse the command line and build the argv array.
Characters enclosed in single quotes are treated as a
single argument. Return true if the user has requested a BG
job, false if the user has requested a FG job. */

149 int parseline(const char *cmdline, char **argv)
150 {
151 static char array[MAXLINE]; /* holds local copy of command

line */
152 char *buf = array; /* ptr that traverses command line */
153 char *delim; /* points to first space delimiter */
154 int argc; /* number of args */
155 int bg; /* background job? */
156

157 strcpy(buf, cmdline);
158 buf[strlen(buf) - 1] = ’ ’; /* replace trailing ’\n’ with

space */
159 while (*buf && (*buf == ’ ’)) /* ignore leading spaces */
160 buf++;
161

162 /* Build the argv list */
163 argc = 0;
164 if (*buf == ’\’’) {
165 buf++;
166 delim = strchr(buf, ’\’’);
167 } else delim = strchr(buf, ’ ’);
168

169 while (delim) {
170 if (*buf == ’$’) {
171 buf++;
172 char * copy = malloc(strlen(buf)-1);
173 strncpy(copy, buf, strlen(buf)-1);
174 if(getenv(copy)!=NULL) argv[argc++] = getenv(copy);
175 *delim = ’\0’;
176 buf = delim + 1;
177 while (*buf && (*buf == ’ ’)) /* ignore spaces */
178 buf++;
179 if (*buf == ’\’’){
180 buf++;
181 delim = strchr(buf, ’\’’);
182 } else delim = strchr(buf, ’ ’);
183 free(copy);
184 } else {
185 argv[argc++] = buf;
186 *delim = ’\0’;
187 buf = delim + 1;
188 while (*buf && (*buf == ’ ’)) /* ignore spaces */
189 buf++;
190 if (*buf == ’\’’) {
191 buf++;
192 delim = strchr(buf, ’\’’);
193 } else delim = strchr(buf, ’ ’);
194 }
195 }
196

197 argv[argc] = NULL;
198 if (argc == 0) /* ignore blank line */
199 return 1;
200

201 /* should the job run in the background? */
202 if ((bg = (*argv[argc - 1] == ’&’)) != 0) {
203 argv[--argc] = NULL;
204 }
205 return bg;
206 }
207

208 /* builtin_cmd - If the user has typed a built-in command then
execute it immediately. */

209 int builtin_cmd(char **argv)
210 {
211 if(!strcmp(argv[0], "quit")) exit(0);
212 if(!strcmp(argv[0], "jobs")){ listjobs(jobs); return 1; }
213 if(!strcmp(argv[0], "bg")) { do_bgfgkl(argv); return 1; }
214 if(!strcmp(argv[0], "fg")) { do_bgfgkl(argv); return 1; }
215 if(!strcmp(argv[0], "kill")) { do_bgfgkl(argv); return 1; }
216 if(!strcmp(argv[0], "export")) { do_export(argv); return 1;

}
217 return 0; /* not a builtin command */
218 }
219

220

221

222 /*
223 * do_bgfgkl - Execute the builtin bg, fg and kill commands
224 */
225 void do_bgfgkl(char **argv)
226 {
227 struct job_t * job;
228 char * stop;
229 if (argv[1] == 0) {
230 printf("%s command requires PID or %%jobid argument\n",

argv[0]);
231 return;
232 }
233 if(argv[1][0] == ’%’){
234 int jid = strtol(argv[1]+1, &stop, 10);
235 if (stop == argv[1]+1) {
236 printf("%s: argument must be a PID or %%jobid\n",

argv[0]);
237 return;
238 }
239 job = getjobjid(jobs, jid);
240 if (job == NULL) {
241 printf("%s: No such job\n", argv[1]);
242 return;
243 }
244 } else {
245 int pid = strtol(argv[1], &stop, 10);
246 if (stop == argv[1]) {
247 printf("%s: argument must be a PID or %%jobid\n",

argv[0]);
248 return;
249 }
250 job = getjobpid(jobs, pid);
251 if (job == NULL) {
252 printf("(%s): No such process\n", argv[1]);
253 return;
254 }
255 }
256

257 kill(-job->pid, SIGCONT);
258

259 if(!strcmp(argv[0], "bg")){
260 job->state = BG;
261 printf("[%d] (%d) %s", job->jid, job->pid, job->cmdline)

;
262 }
263 if(!strcmp(argv[0], "fg")){
264 job->state = FG;
265 waitfg(job->pid);
266 }
267 if(!strcmp(argv[0], "kill")) kill(-job->pid, SIGKILL);
268

269 return;
270 }
271

272 /* do_export - Execute the builtin export commands */
273 void do_export(char **argv)
274 {
275 char * name = strtok(argv[1], "=");
276 char * value = strtok(NULL, "=");
277 setenv(name, value, 1);
278 return;
279 }
280

281 /* waitfg - Block until process pid is no longer the foreground
process */

282 void waitfg(pid_t pid)
283 {
284 while (pid == fgpid(jobs)) sleep(1);
285 return;
286 }
287

288 /* sigint_handler - The kernel sends a SIGINT to the shell
whenver the user types ctrl-c at the keyboard. Catch it
and send it along to the foreground job. */

289 void sigint_handler(int sig)
290 {
291 pid_t pid;
292 if ((pid = fgpid(jobs)) == 0) return;
293 kill(-pid, sig);
294 return;
295 }

System Programming Fall 2022 � haewonc

296

297 /* sigtstp_handler - The kernel sends a SIGTSTP to the shell
whenever the user types ctrl-z at the keyboard. Catch it
and suspend the foreground job by sending it a SIGTSTP. */

298 void sigtstp_handler(int sig)
299 {
300 pid_t pid;
301 if ((pid = fgpid(jobs)) == 0) return;
302 kill(-pid, sig);
303 return;
304 }
305

306

307 /* sigchld_handler - The kernel sends a SIGCHLD to the shell
whenever a child job terminates, or stops because it
received a SIGSTOP or SIGTSTP signal. The handler reaps all
available zombie children, but doesn’t wait for any other
currently running children to terminate. */

308 void sigchld_handler(int sig)
309 {
310 int olderrno = errno;
311 int status;
312 pid_t pid;
313 while ((pid = waitpid(-1, &status, WNOHANG | WUNTRACED)) >

0) {
314 struct job_t *job = getjobpid(jobs, pid);
315 if (WIFEXITED(status)) {
316 deletejob(jobs, pid);
317 } else if (WIFSIGNALED(status)) {
318 if (WTERMSIG(status) == SIGINT){
319 sio_puts("Job [");
320 sio_putl(job->jid);
321 sio_puts("] (");
322 sio_putl(pid);
323 sio_puts(") terminated by signal ");
324 sio_putl(WTERMSIG(status));
325 sio_puts("\n");
326 }
327 deletejob(jobs, pid);
328 } else if (WIFSTOPPED(status)) {
329 sio_puts("Job [");
330 sio_putl(job->jid);
331 sio_puts("] (");
332 sio_putl(pid);
333 sio_puts(") stopped by signal ");
334 sio_putl(WSTOPSIG(status));
335 sio_puts("\n");
336 job->state = ST;
337 }
338 }
339 /* other handlers can’t overwrite the value of errno */
340 errno = olderrno;
341 return;
342 }
343

344 /* sigquit_handler - The driver program can gracefully terminate
the child shell by sending it a SIGQUIT signal. */

345 void sigquit_handler(int sig)
346 {
347 printf("Terminating after receipt of SIGQUIT signal\n");
348 exit(1);
349 }
350

351 /* Signal - wrapper for the sigaction function. Different
versions of Unix can have different signal handling
semantics. Some older systems restore the action to default
after catching signal, and some systems don’t block
signals of the type being handled. So use this. */

352 handler_t *Signal(int signum, handler_t *handler)
353 {
354 struct sigaction action, old_action;
355 action.sa_handler = handler;
356 sigemptyset(&action.sa_mask); /* block sigs of type being

handled */
357 action.sa_flags = SA_RESTART; /* restart syscalls if

possible */
358 if (sigaction(signum, &action, &old_action) < 0)
359 unix_error("Signal error");
360 return (old_action.sa_handler);
361 }

11 Malloc lab
1 #define ALIGNMENT 8
2 #define ALIGN(size) (((size) + (ALIGNMENT - 1)) & ~0x7)
3

4 #define WSIZE 4 /* Word and header/footer size (bytes) */
5 #define DSIZE 8 /* Double word size (bytes) */
6 #define INITCHUNK (1<<6)
7 #define CHUNKSIZE (1<<12) /* Extend heap by this amount (bytes)

*/
8 #define LISTSIZE 20
9

10 #define MAX(x, y) ((x) > (y) ? (x) : (y))
11 /* Pack a size and allocated bit into a word */
12 #define PACK(size, alloc) ((size) | (alloc))
13

14 /* Read and write a word at address p */
15 #define GET(p) (*(unsigned int *)(p))
16 #define PUT(p, val) (*(unsigned int *)(p) = (val))
17 #define PUT_ADD(p, bp) (*(unsigned int *)(p) = (unsigned int)(bp

))
18 /* Read the size and allocated fields from address p */
19 #define GET_SIZE(p) (GET(p) & ~0x7)
20 #define GET_ALLOC(p) (GET(p) & 0x1)
21 /* Given block ptr bp, compute address of its header and footer

*/
22 #define HDRP(bp) ((char *)(bp) - WSIZE)
23 #define FTRP(bp) ((char *)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)
24 /* Given block ptr bp, compute address of next and previous

blocks */
25 #define NEXT_BLKP(bp) ((char *)(bp) + GET_SIZE(((char *)(bp) -

WSIZE)))
26 #define PREV_BLKP(bp) ((char *)(bp) - GET_SIZE(((char *)(bp) -

DSIZE)))
27

28 #define PREV_ADD(bp) ((char *)(bp))
29 #define NEXT_ADD(bp) ((char *)(bp) + WSIZE)
30 #define PREV(bp) (*(char **)(bp))
31 #define NEXT(bp) (*(char **)(NEXT_ADD(bp)))
32

33 static void* extend_heap(size_t words);
34 static void* coalesce(void* bp);
35 static void append(void* bp, size_t asize);
36 static void delete(void* bp);
37 static void* place(void* bp, size_t asize);
38

39 static char* heap_listp;
40 char* segfree_list[LISTSIZE];
41

42 /* mm_init - initialize the malloc package. */
43 int mm_init(void) {
44 for (int i = 0; i < LISTSIZE; i++) {
45 segfree_list[i] = NULL;
46 }
47 if ((heap_listp = mem_sbrk(4 * WSIZE)) == (void*)-1)
48 return -1;
49 PUT(heap_listp, 0); /* Alignment padding */
50 PUT(heap_listp + (1 * WSIZE), PACK(DSIZE, 1)); /* Prologue

header */
51 PUT(heap_listp + (2 * WSIZE), PACK(DSIZE, 1)); /* Prologue

footer */
52 PUT(heap_listp + (3 * WSIZE), PACK(0, 1)); /* Epilogue

header */
53 /* Extend the empty heap with a free block of CHUNK bytes */
54 if (extend_heap(INITCHUNK) == NULL)
55 return -1;
56 return 0;
57 }
58 static void* extend_heap(size_t words)
59 {
60 char* bp;
61 size_t size;
62 size = ALIGN(words);
63

64 if ((long)(bp = mem_sbrk(size)) == -1)
65 return NULL;
66

67 /* Initialize free block header/footer and the epilogue
header */

68 PUT(HDRP(bp), PACK(size, 0)); /* Free block header */
69 PUT(FTRP(bp), PACK(size, 0)); /* Free block footer */

System Programming Fall 2022 � haewonc

70 PUT(HDRP(NEXT_BLKP(bp)), PACK(0, 1)); /* New epilogue header

*/
71

72 append(bp, size);
73

74 /* Coalesce if the previous block was free */
75 return coalesce(bp);
76 }
77

78 static void* coalesce(void* bp)
79 {
80 size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));
81 size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));
82 size_t size = GET_SIZE(HDRP(bp));
83

84 if (prev_alloc && next_alloc) { /* Case 1 */
85 return bp;
86 }
87 else if (prev_alloc && !next_alloc) { /* Case 2 */
88 delete(bp);
89 delete(NEXT_BLKP(bp));
90 size += GET_SIZE(HDRP(NEXT_BLKP(bp)));
91 PUT(HDRP(bp), PACK(size, 0));
92 PUT(FTRP(bp), PACK(size, 0));
93 }
94 else if (!prev_alloc && next_alloc) { /* Case 3 */
95 delete(bp);
96 delete(PREV_BLKP(bp));
97 size += GET_SIZE(HDRP(PREV_BLKP(bp)));
98 PUT(FTRP(bp), PACK(size, 0));
99 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));

100 bp = PREV_BLKP(bp);
101 }
102 else { /* Case 4 */
103 delete(bp);
104 delete(NEXT_BLKP(bp));
105 delete(PREV_BLKP(bp));
106 size += GET_SIZE(HDRP(PREV_BLKP(bp))) + GET_SIZE(HDRP(

NEXT_BLKP(bp)));
107 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
108 PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));
109 bp = PREV_BLKP(bp);
110 }
111 append(bp, size);
112 return bp;
113 }
114

115 static void append(void* bp, size_t asize) {
116 void* prev_p = NULL;
117 void* curr_p = NULL;
118 int lidx = 0;
119

120 while (lidx < LISTSIZE - 1) {
121 if (asize <= 1)
122 break;
123 asize >>= 1;
124 lidx++;
125 }
126 prev_p = segfree_list[lidx];
127 while (prev_p != NULL) {
128 if (asize <= GET_SIZE(HDRP(prev_p)))
129 break;
130 curr_p = prev_p;
131 prev_p = PREV(prev_p);
132 }
133

134 if (prev_p == NULL && curr_p == NULL) {
135 PUT_ADD(PREV_ADD(bp), NULL);
136 PUT_ADD(NEXT_ADD(bp), NULL);
137 segfree_list[lidx] = bp;
138 }
139 else if (prev_p == NULL && curr_p != NULL) {
140 PUT_ADD(PREV_ADD(bp), NULL);
141 PUT_ADD(NEXT_ADD(bp), curr_p);
142 PUT_ADD(PREV_ADD(curr_p), bp);
143 }
144 else if (curr_p == NULL) {
145 PUT_ADD(PREV_ADD(bp), prev_p);
146 PUT_ADD(NEXT_ADD(prev_p), bp);
147 PUT_ADD(NEXT_ADD(bp), NULL);
148 segfree_list[lidx] = bp;

149 }
150 else {
151 PUT_ADD(PREV_ADD(bp), prev_p);
152 PUT_ADD(NEXT_ADD(prev_p), bp);
153 PUT_ADD(NEXT_ADD(bp), curr_p);
154 PUT_ADD(PREV_ADD(curr_p), bp);
155 }
156 return;
157 }
158 static void delete(void* bp) {
159 size_t size = GET_SIZE(HDRP(bp));
160 int lidx = 0;
161

162 while (lidx < LISTSIZE - 1) {
163 if (size <= 1)
164 break;
165 size >>= 1;
166 lidx++;
167 }
168

169 if (PREV(bp) == NULL && NEXT(bp) == NULL) {
170 segfree_list[lidx] = NULL;
171 } else if ((PREV(bp) == NULL && NEXT(bp) != NULL)) {
172 PUT_ADD(PREV_ADD(NEXT(bp)), NULL);
173 } else if ((NEXT(bp) == NULL)) {
174 PUT_ADD(NEXT_ADD(PREV(bp)), NULL);
175 segfree_list[lidx] = PREV(bp);
176 } else {
177 PUT_ADD(NEXT_ADD(PREV(bp)), NEXT(bp));
178 PUT_ADD(PREV_ADD(NEXT(bp)), PREV(bp));
179 }
180 return;
181 }
182

183 static void* place(void* bp, size_t asize) {
184 size_t csize = GET_SIZE(HDRP(bp));
185

186 delete(bp);
187

188 if ((csize - asize) > (2 * DSIZE)) {
189 if (asize < 100) {
190 PUT(HDRP(bp), PACK(asize, 1));
191 PUT(FTRP(bp), PACK(asize, 1));
192 PUT(HDRP(NEXT_BLKP(bp)), PACK(csize - asize, 0));
193 PUT(FTRP(NEXT_BLKP(bp)), PACK(csize - asize, 0));
194 append(NEXT_BLKP(bp), csize - asize);
195 }
196 else {
197 PUT(HDRP(bp), PACK(csize - asize, 0));
198 PUT(FTRP(bp), PACK(csize - asize, 0));
199 PUT(HDRP(NEXT_BLKP(bp)), PACK(asize, 1));
200 PUT(FTRP(NEXT_BLKP(bp)), PACK(asize, 1));
201 append(bp, csize - asize);
202 return NEXT_BLKP(bp);
203 }
204 }
205 else {
206 PUT(HDRP(bp), PACK(csize, 1));
207 PUT(FTRP(bp), PACK(csize, 1));
208 }
209

210 return bp;
211 }
212

213 /* mm_malloc - Allocate a block by incrementing the brk pointer.
Always allocate a block whose size is a multiple of the
alignment. */

214 void* mm_malloc(size_t size) {
215 size_t asize; /* Adjusted block size */
216 size_t extendsize; /* Amount to extend heap if no fit */
217 size_t tsize;
218 int lidx = 0;
219 char* bp = NULL;
220 /* Ignore spurious requests */
221 if (size == 0)
222 return NULL;
223

224 /* Adjust block size to include overhead and alignment reqs.

*/
225 if (size <= DSIZE) {
226 asize = 2 * DSIZE;

System Programming Fall 2022 � haewonc

227 }
228 else {
229 asize = ALIGN(size + DSIZE);
230 }
231 tsize = asize;
232 /* Search the free list for a fit */
233 while (lidx < LISTSIZE && bp == NULL) {
234 if (((tsize <= 1) && (segfree_list[lidx] != NULL)) || (

lidx == LISTSIZE - 1)) {
235 bp = segfree_list[lidx];
236 while (bp != NULL) {
237 if (asize > GET_SIZE(HDRP(bp)))
238 bp = PREV(bp);
239 else
240 break;
241 }
242 }
243 tsize >>= 1;
244 lidx++;
245 }
246

247 /* No fit found. Get more memory and place the block */
248 if (bp == NULL) {
249 extendsize = MAX(asize, CHUNKSIZE);
250 if ((bp = extend_heap(extendsize)) == NULL)
251 return NULL;
252 }
253 bp = place(bp, asize);
254 return bp;
255 }
256

257 /* mm_free - Freeing a block does nothing. */
258 void mm_free(void* ptr) {
259 size_t size = GET_SIZE(HDRP(ptr));
260 PUT(HDRP(ptr), PACK(size, 0));
261 PUT(FTRP(ptr), PACK(size, 0));
262 append(ptr, size);
263 coalesce(ptr);
264 }
265

266 /* mm_realloc - Implemented simply in terms of mm_malloc and
mm_free */

267 void* mm_realloc(void* ptr, size_t size) {
268 void* new_ptr = ptr;
269 int extendsize = 0;
270 int sizesum = 0;
271 size_t copysize = size;
272

273 if (size == 0) return NULL;
274 if (copysize <= DSIZE) {
275 copysize = 2 * DSIZE;
276 } else {
277 copysize = ALIGN(size + DSIZE);
278 }
279

280 if (GET_SIZE(HDRP(ptr)) >= copysize)
281 return ptr;
282

283 if (GET_ALLOC(HDRP(NEXT_BLKP(ptr))) && GET_SIZE(HDRP(
NEXT_BLKP(ptr)))) {

284 new_ptr = mm_malloc(copysize - DSIZE);
285 memcpy(new_ptr, ptr, copysize);
286 mm_free(ptr);
287 } else {
288 sizesum = GET_SIZE(HDRP(ptr)) + GET_SIZE(HDRP(NEXT_BLKP(

ptr)));
289 if (sizesum < (int)copysize) {
290 extendsize = MAX((int)copysize - sizesum, CHUNKSIZE)

;
291 if (extend_heap(extendsize) == NULL)
292 return NULL;
293 }
294 delete(NEXT_BLKP(ptr));
295 PUT(HDRP(ptr), PACK(sizesum + extendsize, 1));
296 PUT(FTRP(ptr), PACK(sizesum + extendsize, 1));
297 }
298 return new_ptr;
299 }

