
Algorithms Fall 2023 � haewonc

1 Graph

1.1 Breadth-first search (BFS)
The distance between two nodes is the length of the shortest path
between them. How do we find the shortest paths from s to all
other vertices?

function BFS(G, s)
for all u ∈ V do

dist(u)← ∞
dist(s)←0
Q← [s] ▷ queue containing s
while Q is not empty do

u← pop(Q)
for all edges (u, v) ∈ E do

if dist(v)← ∞ then
push(Q, v)
dist(v)← dist(u)+1

1.1.1 Correctness

Use induction. For each d = 0, 1, 2, · · · there is a moment at which

• All nodes at distance ≤ d from s have distances correctly set
• All other nodes have their distances set to∞
• The queue contains exactly the nodes at distance d

1.1.2 Analysis

Each vertex is put on the queue exactly once→ 2|V | queue oper-
ations. for loop looks at each edge once (in directed graphs) or
twice (in undirected graphs)→ O(|E|) time. Therefore, O(|V |+ |E|).

1.2 Weighted graphs
Can we adapt BFS to a more general graph G = (V, E) whose edge
lengths are positive integers?

1.2.1 Priority Queue

Data structure supporting the following operations:

• insert: Add a new element to the set.
• decreasekey: Accommodate the decrease in key value of a

particular element
• deletemin: Return the element with the smallest key, and

remove it from the set.
• makequeue: Build a priority queue out of the given elements,

with the given key values. (In many implementations, this is
faster than inserting the elements one by one.)

1.2.2 Binary heap (Implementation)

• Complete Binary Tree: All levels are completely filled except
possibly the lowest, which is filled from the left up to a point.
• The value of each node ≤ value of its children. (min-heap)

1.3 Dijkstra’s algorithm
Using prev, we can construct shortest-path tree.

function dijkstra(G, l, s)
for all u ∈ V do

dist(u)← ∞
prev(u)← nil

dist(s)← 0
H ← makequeue(V)
while H is not empty do

u← deletemin(H)
for all edges (u, v) ∈ E do

if dist(v)>dist(u)+l(u, v) then
dist(v)← dist(u)+l(u, v)
prev(v)← u
decreasekey(H, v) ▷ Set key of v to dist(v)

1.3.1 Correctness

Starting from s, we expand the known region R of the graph where
shortest paths are known. What is the next vertex v to add to R?–
The node outside R that is closest to s. Consider the shortest path
from s to v.

Let u be the node before v on this path. Since all edge lengths are
positive, u must be closer to s than v is. Thus, u is in R. (Since
v is the closest node to s outside R.) So, the shortest path from s
to v is a known shortest path extended by a single edge. v is the
node outside R for which the smallest value of dist(s, u)+l(u, v) is
attained, as u ranges over R.

Following this idea, we prove the correctness using induction. At
the end of each iteration of the while loop, the following conditions
hold:

• There is a value dsuch that all nodes in R are at distance ≤ d
from s and all nodes outside R are at distance ≥ d from s
• For every node u, the value dist(u) is the length of the shortest

path from s to u whose intermediate nodes are constrained to be
in R (if no such path exists, the value is∞).

1.3.2 Analysis

1. |V | deletemin operations
2. |V | + |E| insert/decreasekey operations

1 2 Total

Array O(|V |) O(1) O(|V |2)
Binary heap O(log |V |) O(log |V |) O((|V | + |E|) log |V |)

d-ary heap O(
d log |V |

log d
) O(

log |V |
log d

) O((|V | · d + |E|)
log |V |
log d

)

Fib. heap O log(|V |) O(1) O(|V | log |V | + |E|)

Table 1. Running time by implementation of priority queue

1.4 Update

Other way to prove correctness of Dijkstra’s algorithm

We can consider Dijkstra’s algorithm as performing a sequence of
the following update procedure.

function update(u, v)
dist(v)← min {dist(v), dist(u)+l(u, v)}

This update operation uses the fact that the distance to v cannot be
more than the distance to u + l(u, v).

Algorithms Fall 2023 � haewonc

Property 2 (Safeness)

Initializing dist(s) = 0 and dist(v) = ∞ ∀v ∈ V − {s} establishes
dist(v) ≥ distance to v for all v ∈ V . This invariant is maintained
over any sequence of update’s.

Proof. Suppose not. Let v be the first vertex for which dist(v)<
distance to v, and let u be the vertex that caused dist(v) to change:
dist(v) = dist(u) + l(u, v). Then,

dist(v) < distance to v (supposition)
≤ distance to u + distance from u to v (triangle inequality)
≤ distance to u + l(u, v) (shortest ≤ specific)
≤ dist(u) + l(u, v) (v is first violation)

Contradiction. □

Property 1

Let u be v’s predecessor on a shortest path from s to v. Then, if
dist(u)=distance to u, after update(u, v), dist(v) = distance to v.

Proof. distance to v = distance to u + l(u, v). Suppose dist(v)>distance
to v before update. (Otherwise, by Property 2, dist(v) = distance
to v.) Then, dist(v) > dist(u) + l(u, v) because dist(v)>distance to
v=distance to u+l(u, v)=dist(u) + l(u, v). By update(u, v), dist(v) =
dist(u) + l(u, v) = distance to v. □

Theorem 1

Dijkstra’s algorithm terminates with dist(v) = distance to v∀v ∈ V .

Proof. It suffices to show that dist(v) = distance to v for every
v ∈ V when v is added to R. Suppose u is the first vertex added
to R for which dist(u) > distance to u. Let y be the first vertex in
V − R along a shortest path from s to u, and let x be its predecessor.
Since u is the first vertex violating the claimed invariant, we have
dist(x)= distance to x. When x was added to R, we update the edge
(x, y), which implies that dist(y) = distance to y ≤ distance to u <
dist(u). But dist(u)≤ dist(y) by our choice of u. Contradiction. □

1.5 Bellman-Ford algorithm

function Bellman-Ford(G, l, s)
for all u ∈ V do

dist(u)← ∞
prev(u)← nil

dist(s)← 0
for |V | − 1 times do

for all e ∈ E do
update(e)

1.5.1 Negative edges

Consider a shortest path from s to t.

This path can have at most |V | − 1 edges. If the sequence of updates
performed includes (s, u1), (u1, u2), · · · , (uk, t) in that order (not
necessarily consecutively), then by Property 1, the distance to t will
be correctly computed. So simply update all edges |V | − 1 times.

1.6 Negative cycles
If a graph contains a negative-weight cycle, some shortest paths
may not exist. Instead of stopping after |V | − 1 iterations, perform
one extra round. There is a negative cycle if and only if some dist
value is reduced during this final round.

1.7 Shortest paths in dags
We need to perform a sequence of updates that includes every
shortest path as a subsequence. In any path of a dag, the vertices
appear in increasing linearized order.

function dag-Shortest-Paths(G, l, s)
for all u ∈ V do

dist(u)← ∞
prev(u)← nil

dist(s)← 0
Linearize G
for each u ∈ V , in linearized order do

for all (u, v) ∈ E do
update(u, v)

2 Greedy algorithms

2.1 Minimum spanning tree
The minimum spanning tree (MST) is connected tree with mini-
mum cost.

• Input: Undirected graph G = (V, E), edge weights we

• Output: Tree T = (V, E′), E′ ⊆ Ethat minimizes weight(T) =
∑
e∈E′

we

Since removing a cycle edge cannot disconnect a graph, the solution
must be connected and acyclic.

Undirected connected acyclic graphs = trees

2.1.1 Properties of trees

• A tree on n nodes has n − 1 edges
• Any connected, undirected graph with |E| = |V | − 1 is a tree
• An undirected graph is a tree if and only if there is a unique path

between any pair of nodes.

2.2 Kruskal’s algorithm
1. Starts with the empty graph
2. Repeatedly add the lightest edge that doesn’t produce a cycle.

2.2.1 Cut property

Theorem 2

Suppose edges X are part of a MST of G = (V, E). Pick any subset
of nodes S for which X does not cross between S and V − S , and
let e be the lightest edge across this partition. Then, X ∪ {e} is part
of some MST.

Proof. If e is in T, done. Otherwise, add e to T . It creates a cycle.
This cycle must have another edge e′ across the cut (S ,V − S).
Remove e′, then we have new spanning tree T ′ = T ∪ {e} − {e′}.

weight(T ′) = weight(T) + w(e) − w(e′)

Since e is the lightest edge crossing the cut, w(e) ≤ w(e′). Thus
weight(T ′) ≤ weight(T). Since T is a MST, T ′ is also a MST. □

Algorithms Fall 2023 � haewonc

2.2.2 Correctness

At any given moment, the edges already chosen form a partial
solution, a collection of connected components (trees). The next
edge e to be added connects two of these components; call them
T1,T2. Since e is the lightest edge that doesn’t produce a cycle, it
is certain to be the lightest edge between T1 and V − T1. Therefore,
it satisfies the cut property.

2.2.3 Implementation

We use disjoint-set data structure to test candidate edge u − v if
they lie in different components, not producing a cycle.

• makeset(x): create a singleton set containing just x
• find(x): which set does x belong?
• union(x, y): merge the sets containing x and y

function kruskal(G,w)
for u ∈ V do makeset(u)
X ← {}
Sort the edges E by weight
for edges {u, v} ∈ E, in increasing order of weight do

if find(u) ,find(v) then
X ← X ∪ {u, v}
union(u, v)

→ |V | makeset, 2|E| find, |V | − 1 union operations

• Store a set as a directed tree.
• Nodes of the tree are elements of the set, in no particular order.
• Each has parent pointers π that lead up to the root of the tree.
• The root is a representative, or name, for the set.
• The root has a parent pointer π pointing itself.
• The rank represents the height of the subtree from the node.

function makeset(x)
π(x) = x
rank(x) = 0

Constant-time operation

function find(x)
while x , π(x) do x = π(x)

return x
O(height of the tree) algorithm

Make the root of the shorter tree point to the root of the taller
tree. Then, the overall height increases only if the two trees being
merged are equally tall.

function union(x, y)
rx ← find(x), ry ← find(y)
if rx = ry then return
if rank(rx)>rank(ry) then
π(ry)← rx

else
π(rx)← ry

if rank(rx)=rank(ry) then
rank(ry)← rank(rx)+1

2.2.4 Analysis

• For any x, rank(x)<rank(π(x))
• Any root node of rank k has at least 2k nodes in its tree
• If there are n elements overall, there can be at most n/2k nodes

of rank k

The maximum rank is log n. Thus all the trees have height ≤ log n,
and this is an upper bound on the running time of find and
union.

• O(|E| log |V |) to sort the edges (∵ log |E| = Θ(log |V |))
• O(|E| log |V |) for find and union operations

→ Kruskal’s algorithm is O(|E| log |V |).

2.3 Prim’s algorithm
The cut property suggests that the following greedy schema works
to find MST.

1. X is edges picked so far
2. Pick a set S ∈ V for which X has no edges between S ,V − S
3. Let e ∈ E be the minimum weight edge between S ,V − S
4. X = X ∪ {e}

In Prim’s algorithm, the intermediate set of edges X always forms
a subtree. Let S is the set of this tree’s vertices. Use priority
queue to find the lightest edge between a vertex in S and a vertex
outside S , then grow S to include the vertex v < S of smallest cost:
cost(v) = min

u∈S
w(u, v).

function prim(G,w)
for u ∈ V do

cost(u)← ∞
prev(u)← nil

u0 ← any initial node
cost(u)← 0
H=makequeue(V)
while H is not empty do

v← deletemin(H)
for {v, z} ∈ E do

if cost(z)>w(v, z) then
cost(z)← w(v, z)
prev(z)← v
decreasekey(H, z)

2.4 Huffman encoding
Consider problem of designing a binary code where each symbol
is represented by a unique binary string. Given the frequencies
for each symbol, using variable-length code can compress data
considerably by giving frequent symbols short codewords.

2.4.1 Prefix-free encoding

If codewords are {0,01,11,001}, the decoding of 001 is ambiguous.
The prefix-free encoding is an encoding that no codeword is a
prefix of another codeword. An optimal code is represented by a
full binary tree, which any internal node has two children.

Algorithms Fall 2023 � haewonc

2.4.2 Cost of tree

How do we find the optimal coding tree, given the frequencies
f1, f2, · · · , fn of n symbols? We want to minimize the

cost of tree =
n∑

i=1

fi · (depth of ith symbol in tree)

The frequency of an internal node is defined as the sum of the fre-
quencies of its descendant leaves–the number of times the internal
node is visited during decoding. So the total number of bits = cost
of tree = the sum of the frequencies of all leaves and internal
nodes except the root.

2.4.3 Greedy algorithm

1. The two symbols with the smallest frequencies f1, f2 must be at
the bottom of the optimal tree, as children of the lowest internal
node. (two since the tree is full).

2. Any tree in which f1, f2 are sibling has cost f1 + f2+the cost for
a tree with n − 1 leaves of frequencies (f1 + f2), f3, · · · , fn

function Huffman(f)
H ← a priority queue of integers ordered by f
for i = 1 to n do

insert(H, i)
for k = n + 1 to 2n − 1 do

i← deletemin(H), j← deletemin(H)
Create a node numbered k with children i, j
f [k]← f [i] + f [j]
insert(H, k)

2.5 Scheduling problem
Given two arrays S [1...n] and F[1...n] listing the start and finish
times of each class, choose the largest subset X ∈ {1, · · · n} so that
for any pair i, j ∈ X, either S [i] > F[j] or S [j] > F[i]

2.5.1 Greedy algorithm

1. Sort classes by finish times.
2. Scan classes in the sorted order and choose the next class that

does not conflict with the latest class.

function GreedySchedule(S [1..n], F[1..n])
Sort F and permute S to match
count← 1
X[count]← 1
for i←2 to n do

if S [i] > F[X[count]] then
count← count+1
X[count]← i

2.5.2 Correctness

Lemma 1

At least one maximal conflict free schedule includes the class that
finishes first.

Proof. Let f be the class that finishes first. Suppose we have a
maximal conflict-free schedule X that does not include f . Let g
be the first class in X to finish. Since f finishes before g does, f
cannot conflict with any class in the set X − {g}. Thus, the schedule
X′ = X ∪ { f } − {g} is also conflict-free. Since X′ has the same size
as X, it is also maximal. □

Theorem 3

The greedy schedule is an optimal schedule.

Proof. Let f be the class that finishes first, and let L be the subset
of classes that start after f finishes. The lemma implies that some
optimal schedule contains f , so the best schedule that contains f
is an optimal schedule. The best schedule that includes f must
contain an optimal schedule for the classes that do not conflict with
f , that is, an optimal schedule for L. The greedy algorithm, by the
inductive hypothesis, computes an optimal schedule from L. □

We use an inductive exchange argument.

• Assume that there is an optimal solution that is different from
the greedy solution.
• Find the first difference between the two solutions.
• Argue that we can exchange the optimal choice for the greedy

choice without degrading the solution.
• This argument implies by induction that there is an optimal

solution that contains the entire greedy solution.

3 Dynamic Programming
To solve the original problem, define a collection of subproblems
L(j) : 1 ≤ j ≤ n with the key property: There is an ordering on the
subproblems, and a relation that shows how to solve a subproblem
given the answers to smaller subproblems.

3.1 Shortest paths in dags
Consider the shortest path in linearized dag.

dist(D) = min{dist(B) + 1, dist(C) + 3}

If we compute dist in the left-to-right order, when we get to a node
v, we already have all the information we need to compute dist(v).

The algorithm solves a collection of subproblems, {dist(u) : u ∈ V},
starting from dist(s), then solve larger subproblems.

Algorithms Fall 2023 � haewonc

initialize all dist(·) values to∞
dist(s)← 0
for each v ∈ V − {s}, in linearized order do

dist(v)← min
(u,v)∈E

{dist(u) + l(u, v)}

3.2 Longest increasing subsequences
• Input: a sequence of numbers a1, · · · , an

• A subsequence is any subset of these numbers taken in order, of
the form ai1 , · · · , aik where 1 ≤ i1 < i2 · · · < ik ≤ n
• Find the increasing subsequence of greatest length.
• It is finding the longest path in the dag!

Subproblem: Let L(j) the length of the longest path ending at j

for j = 1, · · · , n do
L(j)← 1 +max{L(i) : (i, j) ∈ E} ▷ Relation

return max L(j)

L values only tells us the length. To construct the subsequence,
while computing L(j), record prev(j), the previous node on the
longest path to j.

3.2.1 Running time

• To compute L(j): O(in-degree(j))
• Total O(|E|)→ O(n2)

3.2.2 Comparison with recursive algorithm

The formula of L(j) suggests an alternative, recursive algorithm
(top-down). Then L(j) = 1 + max{L(1), · · · , L(j − 1)}. The tree
for L(n) has exponential size with many repeated nodes. There are
only small number of distinct subproblems.

3.3 Edit distance
Edit distance of two strings is the cost of their best possible align-
ment. Cost is the number of columns in which the letters differ. We
may place any number of gaps (-).

• Input: Two strings x[1..m], y[1..n]
• Subproblem: E(i, j) defined as prefixes x[1..i], y[1.. j]
• Goal E(m, n)

The rightmost column of the best alignment can be one of:

E(i, j) = min{1+E(i−1, j), 1+E(i, j−1), diff(i, j)+E(i−1, j−1)}

where diff(i, j)= 0 if x[i] = y[j] and 1 otherwise. Base case is
E(i, 0) = i, E(0, j) = j

The answers to all subproblems E(i, j) form a 2-dimensional table.
So the running time is O(mn).

3.4 Common subproblems
• The input is x1, · · · , xn and subproblem is x1, · · · , xi → O(n)
• The input is x1, · · · , xn, y1, · · · ym and subproblem is x1, · · · , xi

and y1, · · · , y j → O(mn)
• The input is x1, · · · , xn and subproblem is xi, · · · , x j → O(n2)
• The input is rooted tree and subproblem is a rooted subtree.

3.5 Knapsack
Given a knapsack of capacity W, n items of weight w1, · · · ,wn

and value v1, · · · vn, choose the most valuable combination of items.
Two versions:

3.5.1 Knapsack with repetition

Define K(w) = maximum value achievable with a knapsack of
capacity w. If the optimal solution to K(w) includes item i, then
removing it leaves an optimal solution to K(w − wi). We don’t
know which i, so try all possibilities.

K(0)← 0
for w = 1 to W do

K(w)← max
i s.t. wi≤w

{K(w − wi) + vi}

return K(W)

This algorithm fills in a 1-d table of length W + 1, in left-to-right
order. Each entry can take up to O(n) time to compute. → O(nW).

3.5.2 Knapsack w/o repetition

Define K(w, j) = maximum value achievable using a knapsack of
capacity w and item 1, · · · , j. Express K(w, j) in terms of smaller
subproblems considering whether item j is needed or not.

K(0, ·)← 0,K(·, 0)← 0
for j = 1 to n do

for w = 1 to W do
if w j > w then

K(w, j)← K(w, j − 1)
else

K(w, j)← max{K(w − w j, j − 1) + v j,K(w, j − 1)}
return K(W, n)

The algorithm fills out a 2-d table, with W + 1 rows and n + 1
columns. Each table entry takes constant time. → O(nW).

3.6 Memoization
In DP, we use a recursive formula to fill out a table of solution
values in a bottom-up manner, from smallest subproblem to largest.
The formula also suggests a recursive algorithm, but we should use
memoization to record the result of subproblem:

if w is in hash table return K(w)
· · · ▷ algorithm body
Insert K(w) into hash table with key w

3.7 Shortest reliable paths
Given a graph G with edge lengths, two nodes s and t and an integer
k, we want the shortest path from s to t that uses at most k edges.

For each vertex v and each integer i ≤ k, define dist(v, i) = the
length of the shortest path from s to t that uses i edges. Base case
is dist(s, 0) = 0,dist(v, 0) = ∞, for all vertices except s.

dist(v, i) = min
(u,v)∈E

{dist(u, i − 1) + l(u, v)}

3.8 Floyd-Warshall algorithm
How to find the shortest path between all pairs of vertices? Running
single-source algorithm |V | times, once for each starting node takes
|V |× Bellman-Ford =O(|V |2|E|). → Can we do better?

Consider V = {1, · · · , n} and subproblem dist(i, j, k) = the length
of the shortest path from i to j in which only nodes {1, · · · , k} can
be used as intermediate nodes (permissible intermediate nodes).

dist(i, j, k) = min{dist(i, k, k − 1) + dist(k, j, k − 1), dist(i, j, k − 1)}

→ O(n3) algorithm, which is much efficient than O(|V |2|E|) espe-
cially in dense graph.

Algorithms Fall 2023 � haewonc

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0)← ∞
for all (i, j) ∈ E do

dist(i, j, 0)← l(i, j)
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do
· · · ▷ Relation equation above

3.9 Independent set
A subset of nodes S ⊂ V is an independent set of graph G = (V, E)
if there are no edges between them. Finding the largest independent
set in a graph is intractable, i.e. no polynomial time algorithm.

3.9.1 Independent set in trees

Start by rooting the tree at any node r. Now, each node defines
a subtree–the one hanging from it. Define I(u) = size of largest
independent set of subtree hanging from u. Suppose we know I(w)
for all descendants w of u. If the independent set

• Include u: cannot include children; move on to grandchildren.
• Don’t include u: move on to children.

I(u) = max{1 +
∑

grandchildren w of u

I(w) +
∑

children w of u

I(w)}

The number of subproblems is exactly the number of vertices. →
O(|V | + |E|).

3.10 Traveling salesman problem (TSP)
Given n cities and the matrix of intercity distances D = (di j), find a
tour that starts and ends at node 1, includes all other cities exactly
once, and has minimum total length. Brute-force algorithm is
trying all possible tour→ O(n!)

For a subset of cities S ⊆ {1, · · · , n} that includes 1, and j ∈ S , let
C(S , j) be the length of the shortest path visiting each node in S
exactly once, starting at 1 and ending at j.

C({1}, 1)← 0
for s = 2 to n do

for all subsets S ⊆ {1, · · · , n} of size s and containing 1 do
C(S , 1)← ∞ ▷ cannot both start and end at 1
for all j ∈ S , j , 1 do

C(S , j)← min
i∈S :i, j

C(S − { j}, i) + di j ▷ second-to-last i

return min
j

C({1, · · · , n}, j) + d j1

There are at most 2n · n subproblems, and each subproblem takes
O(n)→ Total O(n22n)

3.11 Coin change problem
Given a set of denominations D = d1, · · · , dk, find the minimum
number of coins that sums up to n. Assume each di is an integer
and d1 > · · · > dk and dk = 1 so that there is always a solution.

Greedy algorithm repeatedly chooses the largest coin less than or
equal to the remaining sum, until the desired sum is obtained.

• For D = {25, 10, 5, 1}, greedy algorithm works.
• For D = {25, 10, 1}, greedy does not work.

3.11.1 Dynamic programming

Define C[j] to be the minimum number of coins for j cents. denom[j]
is the denomination of a coin used for j cents (for recording)

1: C[0]← 0
2: for j = 1 to n do
3: C[j]← ∞
4: for i = 1 to k do
5: if j ≥ di and 1 +C[j − di] < C[j] then
6: C[j]← 1 +C[j − di]
7: denom[j]← di

→ O(nk)

3.12 Greedy vs. dynamic programming
Greedy-choice property: optimal solution includes greedy choice.

Fractional knapsack problem (↔ 0-1 knapsack) can take fraction of
an item. Greedy algorithm works for fractional knapsack problem.

4 NP-Completeness

4.1 Hardness of problems
We say that an algorithm is efficient if its running time is polynomial–
O(nk) for some constant k.

• Tractable/easy: solvable by polynomial-time algorithms
• Intractable/hard: require superpolynomial time algorithms

NP-complete problems are currently status unknown:

• No polynomial time algorithm has yet been discovered
• No proof that no polynomial-time algorithm can exist.

4.2 P, NP, co-NP
A decision problem is a problem whose output is YES or NO.

• P: the set of decision problems that are solvable in polynomial time
• NP: the set of decision problems that are verifiable in polynomial

time–if the answer is YES, then there is a certificate that can be
checked in polynomial time.
• co-NP: the opposite of NP. If the answer is NO, then there is a

certificate that can be checked in polynomial time.

Every decision problem in P is also in NP. Every decision problem
in P is also in co-NP. Open questions:

Is P , NP? / Is NP , co-NP?

4.2.1 Four cases

(a) P=NP=co-NP (most unlikely)
(b) If NP is closed under complement, then NP = co-NP, but it

need not be the case that P = NP.
(c) P=NP ∩ co-NP, but NP is not closed under complement.
(d) NP , co-NP and P , NP ∩ co-NP (most likely)

Algorithms Fall 2023 � haewonc

4.3 NP-hard, NP-complete
A problem Π is NP-hard if a polynomial-time algorithm for Π
would imply a polynomial-time algorithm for every problem in NP.

Π is NP-hard⇔ If Π can be solved in polynomial time, P=NP.

A problem is NP-complete if it is both NP-hard and in NP. NP-
complete problems are the hardest problems in NP.

What we think the world looks like

4.4 Circuit satisfiability problem
Consider a boolean circuit (a collection of AND, OR, and NOT
gates connected by wires).

• Input: a set of m boolean values x1, · · · , xm

• Output: a single boolean value.

Given specific input, we can calculate the output in linear time
using DFS, since we can compute the output of a k-input gate
in O(k). The circuit satisfiability problem asks, given a circuit,
whether there is an input that makes the circuit output TRUE, or
conversely, the circuit always outputs FALSE (unsatisfiable).

• Nobody solved this problem faster than trying all 2m possible
input, nor proved that this is the best we can do.
• It is in NP. If the answer is YES, then any set of m input values

that produces TRUE output is a certificate. We can verify the
certificate in polynomial time by evaluating the circuit.
• It is NP-complete. (Cook-Levin Theorem)

4.5 Tautology
The formula ϕ is a tautology if it evaluates to 1 for every input. The
problem of deciding whether a formula is a tautology is in co-NP.

4.6 NP-completeness proofs
To prove that a problem A is NP-complete,

• Prove A is NP in by polynomial-time verification for certificate
• Prove A is NP-hard by reduction argument

1. Show a polynomial-time transformation from input x of B to
input f (x) of A

2. Explain f (x) is YES for A if and only if x is YES for B

4.6.1 Reduction

To prove that problem A is NP-hard, use reduction argument, i.e.
reduce a known NP-hard problem B to A (B ≤p A). If any subrou-
tine for task Q can also be used to solve P, we say P reduces to
Q (P ≤p Q). For example, the longest path in a dag reduces to the
shortest path in a dag by negating all edge weights.

4.7 Formula satisfiability problem (SAT)
Let ϕ be a boolean formula constructed from the boolean input
variables x1, · · · , xk,¬,∧,∨,⇒, · · · , and parentheses.

The formula satisfiability problem (SAT) asks whether it is possi-
ble to assign boolean values to the variables so that the formula
evaluates to TRUE.

4.7.1 SAT is NP

If the formula is satisfiable, we can verify the ceritficate in polyno-
mial (linear) time by simply replacing each variable in the formula
with its assigned value.

4.7.2 SAT is NP-hard

Theorem 4

Circuit SAT ≤p SAT

Proof. Given a boolean circuit, we can transform it into a boolean
formula by creating new output variables for each gate including
final output and then writing down the list of gates separated by
ANDs. The original circuit is satisfiable if and only if the resulting
formula is satisfiable.

(→) Given a satisfying input to the circuit, we can get a satisfying
assignment for the formula by computing the output of every gate.

(←) Given a satisfying assignment for the formula, we can get a
satisfying input to the circuit by just ignoring internal and output
variables.

We can transform any boolean circuit into a formula in linear time
using depth-first search. The size of the resulting formula is O(size
of the circuit). Thus, we have a polynomial-time reduction from
circuit satisfiability to SAT. □

4.8 3-SAT
Call a boolean variable or its negation a literal. A boolean formula
is in conjunctive normal form (CNF) if it is a sequence of clauses
connected by ∧, and each clause is a sequence of literals connected
by ∨. A 3-CNF formula is a CNF formula with exactly three distinct
literals per clause. We have trivial reduction 3-SAT ≤p SAT.

4.8.1 3-SAT is NP-hard

Lemma 2

We can transform one- and two-literal clauses to three literal.

Proof.
a = (a ∨ x ∨ y) ∧ (a ∨ x̄ ∨ y) ∧ (a ∨ x ∨ ȳ) ∧ (a ∨ x̄ ∨ ȳ)

a ∨ b = (a ∨ b ∨ x) ∧ (a ∨ b ∨ x̄)
a ∧ b = use formula for one-literal twice

□

Lemma 3

We can transform secondary operations→,↔,⊕ to CNF.

Proof.
x→ y = x̄ ∨ y

x↔ y = (x ∨ ȳ) ∧ (x̄ ∨ y)
x ⊕ y = (x ∨ y) ∧ (x̄ ∨ ȳ)

□

Algorithms Fall 2023 � haewonc

Theorem 5

SAT ≤p 3-SAT

Proof. First, we construct a binary parse tree for the input formula
ϕ, with literals as leaves and connectives as internal nodes. Should
the input formula contain a clause such as the OR of several literals,
we use associativity to parenthesize the expression fully so that
every internal node in the resulting tree has 1 or 2 children. We
introduce a variable yi for the output of each internal node.

Then, we rewrite ϕ as ϕ′, the AND of the root variable y1 and
a conjunction of clauses describing the operation of each node,
(yi ↔ node operation). Using Lemmas 2,3, we can transform ϕ′ to
3-CNF formula ϕ′′.

3-CNF formula ϕ′′ is satisfiable if and only if ϕ′ is satisfiable.
Similar to proof of Theorem 4, satisfiability is conserved from ϕ
to ϕ′, ϕ′′ and ϕ′ is algebraically equivalent. So construction of
formula can easily be accomplished in polynomial time. □

Theorem 6

Circuit SAT ≤p 3-SAT

Proof. First, make every AND, OR gate has only two inputs. If
any gate has k > 2 inputs, replace it with a binary tree of k − 1
two-input gates. Write down the circuit as a formula, with one
clause per gate. Change every gate clause into a CNF formula ϕ:

a = b ∧ c 7→ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b) ∧ (¬a ∨ c)
a = b ∨ c 7→ (¬a ∨ b ∨ c) ∧ (a ∨ ¬b) ∧ (a ∨ ¬c)

a = ¬b 7→ (a ∨ b) ∧ (¬a ∨ ¬b)

By Lemma 2, we can transform ϕ to 3-CNF formula ϕ′. Circuit is
satisfiable if and only if ϕ′ is satisfiable (See proof of Theorem 4). □

4.9 Optimization problem
We want to find a feasible solution with the best value. NP-
completeness applies to decision problem, so cast optimization
problem to decision problem. For example of MST, ask whether
there is a spanning tree with a cost at most k.

We can solve decision problem by solving optimization problem.
So, decision problem is at least no harder than optimization prob-
lem. By showing a decision problem is NPC, we provide an evi-
dence that the optimization problem is hard.

4.10 Independent set (IND-SET)
Let G = (V, E) be an undirected graph. A subset W ⊆ V is indepen-
dent if none of the vertices in W are adjacent.

• Optimization: Size of the largest independent set in G
• Decision: Is there an independent set of k or more vertices?

4.10.1 IND-SET is NP

Given certificate of size k, check if there is any pair among the set
is adjacent→ O(k2).

4.10.2 IND-SET is NP-hard

Theorem 7

3-SAT ≤p IND-SET

Proof. We will transform a 3-CNF formula with k clauses into a
graph that has an independent set of a k if and only if the formula is
satisfiable. The graph has one vertex for each instance of each literal
in the formula. Two nodes are connected by an edge if they are

(i) Literals in the same clause
(ii) A variable and its inverse

(→) If we have a satisfying assignment, then we can choose one
literal in each clause that is TRUE. Those literals form an indepen-
dent set in the graph because (i) they are in different clause, (ii) and
cannot be inverse of each other since they are all TRUE.

(←) If the graph has an independent set of k vertices, then each
vertex must come from a different clause. Assign TRUE to each
literal in the independent set. This assignment is consistent since
contradictory literals are connected by edges. Assign any value to
variables that have no literal in the independent set. The resulting
assignment satisfies the original 3-CNF formula.

The reduction from 3-CNF formula to graph takes polynomial time
and the graph size is O(size of 3-CNF formula). □

4.11 Clique problem (CLIQUE)
A clique is a complete subgraph of undirected graph G = (V, E),
that is, for a subset V ′ ⊆ V of vertices, each pair of V ′ is connected
by an edge in E. The size of a clique is the number of vertices it
contains.

• Optimization: Size of the largest clique in G
• Decision: Is there a clique of size k?

4.11.1 CLIQUE is NP-hard

Theorem 8

3-SAT ≤p CLIQUE

Proof. We will transform a 3-CNF formula with k clauses into
a graph that has an clique of size k if and only if the formula is
satisfiable. The graph has one vertex for each instance of each literal
in the formula. Two nodes are connected by an edge if they are

(i) Literals not in the different clause
(ii) Not a variable and its inverse

(→) If we have a satisfying assignment, there is at least one true
literal in each clause. The true literals form a clique.

(←) If the graph has clique of size k, it covers all clauses and thus
implies a satisfying truth assignment. □

4.12 Vertex cover problem (VERTEX-COVER)
Given a graph G = (V, E), a subset V ′ ⊆ V is a vertex cover if every
edge has at least one endpoint in V ′.

• Optimization: Size of the smallest vertex cover in G
• Decision: Is there a vertex cover of size k?

4.12.1 VERTEX-COVER is NP-hard

Theorem 9

CLIQUE ≤p VERTEX-COVER

Proof. G has a clique of size k if and only if the complement of G
has a vertex cover of size |V | − k.

(→) Suppose G has a clique V ′ ⊆ V with |V ′| = k. Let (u, v) be
any edge in the complement of G. So at least one of u or v does

Algorithms Fall 2023 � haewonc

not belong to V ′, which means edge (u, v) is covered by V − V ′.
Thus, V − V ′ forms a vertex cover of the complement of G with
size |V | − k.

(←) Suppose that the complement of G has a vertex cover V ′ ⊆ V
where |V ′| = |V | − k. Then, ∀u, v ∈ V , if (u, v) is an edge in the
complement of G, then u ∈ V ′ or v ∈ V ′ or both. The contrapositive
is that ∀u, v ∈ V , if u < V ′, v < V ′, then (u, v) ∈ E. Thus, V − V ′ is
a clique and its size is |V | − |V ′| = k. □

Theorem 10

1. V ′ is a clique of G.
2. V ′ is an independent set of the complement of G.
3. V − V ′ is a vertex cover of the complement of G.

Above are equivalent for G = (V, E) and subset V ′ of V .

4.13 Hamiltonian cycles
A hamiltonian cycle in a graph is a cycle that visits every vertex
exactly once. The graph G is hamiltonian if it has a hamiltonian
cycle. The hamiltonian cycle problem (HAM) asks whether a given
graph is hamiltonian. Given two vertices s, t, the hamiltonian path
problem (HAM-PATH) asks whether G has a path from s to t that
goes every vertex exactly once.

Theorem 11

HAM-PATH ≤p HAM

Proof. Map an instance G = (V, E), s, t of HAM-PATH to an
instance G′ = (V ′, E′) of the HAM where V ′ = V ∪ {x} and
E′ = E ∪ {{s, x}, {x, t}} G′ has a Hamiltonian cycle if and only if G
has a hamiltonian path from s to t. (→) Delete edges {s, x}, {x, t}
(←) Add edges {s, x}, {x, t} □

4.13.1 HAM is NP

The certificate is the sequence of |V | vertices that make up the cycle.
We can check wether the sequence contains each vertex in V once
and forms a cycle in polynomial time.

4.13.2 HAM is NP-hard

Theorem 12

VERTEX-COVER ≤p HAM

Proof. Given a graph G and integer k, we will transform it to
graph G′. For each edge (u, v) ∈ G, we have an edge gadget in
G′ consisting of 12 vertices and 14 edges (left). 4 corner vertices
(u, v, 1), (u, v, 6), (v, u, 1), (v, u, 6) have an edge leaving the gadget.
A hamiltonian cycle can only pass through an edge gadget in only
3 ways (right).

G′ also contains k cover vertices, simply numbered 1 through k. For
each vertex u in G, we string together all the edge gadgets for edges
(u, v) into single vertex chain, and then connect edges of the chain
to all cover vertices. Suppose vertex u has d neighbors v1, · · · , vd.
Then, G′ has d − 1 edges between (u, vi, 6) and (u, vi+1, 1), plus k

edges between the cover vertices and (u, v1, 1), and finally k edges
between cover vertices and (u, vd, 6).

For example, the original graph with vertex cover {v,w} (left) can be
transformed to graph G′ (right) with a corresponding hamlitonian
cycle. Chains are colored to match their corresponding vertices.

G′ has a hamiltonian cycle if and only if G has a vertex cover of size k.

(←) Consider a vertex cover of G, {v1, · · · , vk}. Hamiltonian cycle
of G′ starts at cover vertex 1, traverses the vertex chain for v1, then
visits cover vertex 2, then traverses the vertex chain for v2, and so
forth, finally returns to cover vertex 1.

(→) Consider a hamiltonian cycle C in G′. C alternates between
cover vertices and vertex chains, and the vertex chains correspond
to the k vertices in a vertex cover of G.

The size of G′ is polynomial in the size of G, and hence we can
construct G′ in polynomial time in the size of G (in O(n2) time). □

4.14 Traveling salesman problem (TSP)
Assume a complete graph. Each edge has a non-negative integer
weight. The traveling salesman problem (TSP) asks whether there
is a permutation of the vertices s.t. the sum of edges connecting
contiguous vertices (and the last vertex to the first) is k or less.

4.14.1 TSP is NP

The verification algorithm checks that the tour sequence contains
each vertex exactly once, sums up the edge costs, and checks
whether the sum is ≤ k, which can be done in polynomial time.

4.14.2 TSP is NP-hard

Theorem 13

HAM ≤p TSP

Proof. For a graph G in hamiltonian cycle problem, construct an
instance of TSP by forming the complete graph G′ = (V, E′) where
E′ = {(i, j) : i, j ∈ V and i , j}. If there is an edge (i, j) ∈ G,
assign 0 as edge weight, otherwise 1. G has a hamiltonian cycle h
if and only if G′ has a TSP tour with weight 0.

(←) Suppose that G has a hamiltonian cycle h. Then, each edge in
h has weight 0 in G′. Thus, h is a tour in G′ with weight 0.

(→) Suppose that G′ has a TSP tour h′ of cost at most 0. Since
the costs of the edges in E′ are 0 and 1, the cost of h′ is 0 and
each edge on the tour must have cost 0. Therefore, h′ contains only
edges in E. Thus, h′ is a hamiltonian cycle in G. □

Algorithms Fall 2023 � haewonc

4.15 Other NP-hard problems
• SUBSET-SUM: Given finite set S of positive integers and an integer

target t > 0, is there a subset S ′ ⊆ S whose element sum to t?
• 3-COLOR: Given a graph, can it be 3-colored? (2-COLOR ∈ P)

4.16 Hierarchy of complexity classes
The set of decision problems that can be solved

• PSACE: using polynomial space
• EXP: in exponential time
• NEXP: in nondeterministic exponential time; for every YES

instance, there is a certificate of this fact that can be checked in
exponential time.
• EXPSPACE: using exponential space

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

5 Approximation algorithms
How to deal with intractable problems?

• For small input size, just use exponential algorithm
• Special subclasses of hard problems can have polynomial-time

algorithms. You can find an optimal vertex cover for a tree in
linear time. Also, DFN-SAT, 2-CFN-SAT ∈ P.

Or we can use approximation algorithms, a polynomial-time algo-
rithm to find near-optimal solutions.

5.1 Approximation ratio
Consider optimization problems whose solutions have a positive
cost. An algorithm has an approximation ratio ρ(n) if, for ev-
ery input of size n, the cost C of the produced solution satisfies
max{C/C∗,C∗/C} ≤ ρ(n) where C∗ is the cost of the optimal so-
lution. For minimization problems, C∗ ≤ C, for maximization
problems, C ≤ C∗. An algorithm with approximation ratio ρ(n) is
a ρ(n)-approximation algorithm.

5.2 Approximation algorithm for VERTEX-COVER

function Approx-Vertex-Cover(G)
C ← ∅
E′ ← E[G]
while E′ , ∅ do

Let (u, v) be an arbitrary edge of E′

C ← C ∪ {u, v}
Remove from E′ every edge incident on either u or v

return C

Theorem 14

Approx-Vertex-Cover is a polynomial-time 2-approximation algo-
rithm.

Proof. Approx-Vertex-Cover runs in O(V + E) time. C is a vertex
cover since the algorithm loops until every edge E[G] has been
covered by some vertex in C.

Let A be the set of edges that were picked. In order to cover the
edges in A, any vertex cover (including optimal cover C∗) must
include at least one endpoint of each edge in A. No two edges in
A share an endpoint, since once an edge is picked, all other edges
incident on its endpoints are deleted. Thus, no two edges in A
are covered by the same vertex from C∗, |C∗| ≥ |A|. Therefore,
|C| = 2|A| ≤ 2|C∗| □

5.3 Approximation algorithm for TSP
5.3.1 TSP with triangle inequality

Given a complete undirected graph G = (V, E) that has a nonneg-
ative integer cost c(u, v) for each edge (u, v) ∈ E, find a hamil-
tonian cycle (a tour) of G with minimum cost. Cost function
c satisfies the triangle inequality if, for all vertices u, v,w ∈ V ,
c(u,w) ≤ c(u, v) + c(v,w). Many practical applications satisfy the
triangle inequality. TSP is NP-complete even if we require that the
cost function satisfies the triangle inequality. The proof is similar
to proof of Theorem 13, but set the cost to 1 and 2 so that it satisfies
the triangle inequality.

function Approx-TSP-Tour(G, c)
root← some vertex ∈ V[G]
T ← Prim(G, c, r)
H ← list of vertices ordered according to when they are first

visited in a preorder tree walk of T
return hamiltonian cycle H

Theorem 15

Approx-TSP-Tour is a polynomial-time 2-approximation algorithm
with the triangle inequality.

Proof. Approx-TSP-Tour runs in O(V2) time since Prim is O(V2)
time algorithm and preorder tree walk takes O(V).

Consider an optimal tour H∗ and the MST for given graph, T ,
which is obtained by removing any edge from H∗. Therefore,
c(T) ≤ c(H∗). Consider a full walk of T , W. We visit each edge
twice, so c(W) = 2c(T). Thus, c(W) ≤ 2c(H∗). The Approx-TSP-
Tour returns H, the cycle corresponding to the preorder walk. Thus,
c(H) ≤ c(W) ≤ 2c(H∗). □

5.3.2 General TSP

Theorem 16

If P , NP, then for any constant ρ ≥ 1, there is no polynomial-time
ρ-approximation algorithm for the general TSP.

Proof. Suppose that there exists a polynomial-time ρ-approximation
algorithm A for a constant ρ. We can use A to solve HAM in poly-
nomial time.

Let G = (V, E) be an instance of HAM and G′ = (V, E′) be the
complete graph on V . E′ = {(u, v) : u, v ∈ V and u , v}.c(u, v) = 1 if (u, v) ∈ E

ρ|V | + 1 otherwise

Consider the TSP (G′, c). If the graph G has a hamitonian cycle
H, then (G′, c) contains a tour of cost |V |. If G does not contain
a hamiltonian cycle, then a tour has a cost of at least (ρ|V | + 1) +
(|V | − 1) > ρ|V |. So, we can use A to solve the hamiltonian-cycle
problem in polynomial time. Since HAM is NP-complete, if we
can solve it in polynomial time, P=NP. Contradiction. □

Algorithms Fall 2023 � haewonc

A CLRS

A.1 Dynamic programming
A.1.1 Matrix chain multiplication

Let us define m[i, j] as the number of computation required to
multiply matrices Ai, · · · , A j.

function Matrix-Chain-Order(p)
Let m[1..n, 1..n]
Let s[1..n − 1, 2..n] ▷ record optimal parenthesization
for i = 1 to n do

m[i, i]← 0
for l = 2 to n do ▷ chain length

for i = 1 to n − l + 1 do
j← i + l − 1
m[i, j]← ∞
for k = i to j − 1 do

q← m[i, k] + m[k + 1, j] + pi−1 pk p j

if q < m[i, j] then
m[i, j]← q
s[i, j]← k

return m, s

A.1.2 Longest common subsequence (LCS)

Given two sequences X,Y , we say that a sequence Z is a common
subsequence (not necessarily consecutive) of X,Y if Z is a subse-
quence of both. Let us define c[i, j] as the length of LCS of X[1..i]
and Y[1.. j].

function LCS-Length(X,Y)
Let c[0..m, 0..n]
Let b[1..m, 1..n] ▷ record optimal character choice
for i = 1 to m do

c[i, 0]← 0
for j = 0 to n do

c[0, j]← 0
for i = 1 to m do

for j = 1 to n do
if Xi = Yi then

c[i, j]← c[i − 1, j − 1] + 1
b[i, j]← hit

else if c[i − 1, j] ≥ c[i, j − 1] then
c[i, j]← c[i − 1, j]
b[i, j]← decrement X

else
c[i, j]← c[i, j − 1]
b[i, j]← decrement Y

return c, b

A.1.3 Optimal BST

Given a sequence K =< k1, · · · , kn > of n distinct keys in ascending
order. For each key ki, we have a probability pi that a search will
be for ki. Then the expected cost of a search in T is

e(T) =
n∑

i=1

(depthT (ki) + 1) · pi

We wish to construct a binary search tree whose expected search
cost is smallest. Let us define e[i, j] as the expected cost of search-
ing an optimal binary search tree containing the keys ki, · · · , k j.

e[i, j] = min
i≤r≤ j

(e[i, r − 1] + e[r + 1]) +
∑

i≤k≤ j

pk

function Optimal-BST-Cost(p)
Let e[1..n, 1..n]
Let w[0..n]
Let root[1..n, 1..n] ▷ record optimal root
for i = 0 to n do

e[i, i]← 0
w[i]← w[i − 1] + p[i]

for l = 1 to n do
for i = 1 to n − l do

j← i + l
for r = i to j do

val← e[i, r − 1] + e[r + 1, j] + (w[j] − w[i − 1])
if val < e[i, j] then

e[i, j]← val
root[i, j]← r

	Graph
	Breadth-first search (BFS)
	Correctness
	Analysis

	Weighted graphs
	Priority Queue
	Binary heap (Implementation)

	Dijkstra’s algorithm
	Correctness
	Analysis

	Update
	Bellman-Ford algorithm
	Negative edges

	Negative cycles
	Shortest paths in dags

	Greedy algorithms
	Minimum spanning tree
	Properties of trees

	Kruskal's algorithm
	Cut property
	Correctness
	Implementation
	Analysis

	Prim's algorithm
	Huffman encoding
	Prefix-free encoding
	Cost of tree
	Greedy algorithm

	Scheduling problem
	Greedy algorithm
	Correctness

	Dynamic Programming
	Shortest paths in dags
	Longest increasing subsequences
	Running time
	Comparison with recursive algorithm

	Edit distance
	Common subproblems
	Knapsack
	Knapsack with repetition
	Knapsack w/o repetition

	Memoization
	Shortest reliable paths
	Floyd-Warshall algorithm
	Independent set
	Independent set in trees

	Traveling salesman problem (TSP)
	Coin change problem
	Dynamic programming

	Greedy vs. dynamic programming

	NP-Completeness
	Hardness of problems
	P, NP, co-NP
	Four cases

	NP-hard, NP-complete
	Circuit satisfiability problem
	Tautology
	NP-completeness proofs
	Reduction

	Formula satisfiability problem (SAT)
	SAT is NP
	SAT is NP-hard

	3-SAT
	3-SAT is NP-hard

	Optimization problem
	Independent set (IND-SET)
	IND-SET is NP
	IND-SET is NP-hard

	Clique problem (CLIQUE)
	CLIQUE is NP-hard

	Vertex cover problem (VERTEX-COVER)
	VERTEX-COVER is NP-hard

	Hamiltonian cycles
	HAM is NP
	HAM is NP-hard

	Traveling salesman problem (TSP)
	TSP is NP
	TSP is NP-hard

	Other NP-hard problems
	Hierarchy of complexity classes

	Approximation algorithms
	Approximation ratio
	Approximation algorithm for VERTEX-COVER
	Approximation algorithm for TSP
	TSP with triangle inequality
	General TSP

	CLRS
	Dynamic programming
	Matrix chain multiplication
	Longest common subsequence (LCS)
	Optimal BST

