
Computer Organization Spring 2024 � haewonc

1 Cache
Memory technology Access time cost/GB
Static RAM (SRAM) 0.5-2.5ns 2K-5K$
Dynamic RAM (DRAM) 50-70ns 20-75$
Magnetic disk 5-20ms 0.2-2$

SRAM DRAM
Used for Cache Main memory
Density Low (6) High (1)
Power Higher Lower
Content Static (last forever) Dynamic (refreshed regularly)

SRAM vs. DRAM. 1Number of transistor cells.

1.1 The memory bottleneck
• Typical CPU clock rate is 2GHz (=0.5ns cycle time).
• Typical DRAM access time is 30ns ⇡ 60 cycles.
• Typical main memory access is 100ns (200 cycles): DRAM (60),

precharge (20), chip crossings (60, overhead (60).
• Average instruction references are 1 instruction word, 0.3 data word.

Memory delay is mostly communication time. Read/write a bit
is fast. It takes time to select right bit and route the data to/from
bit. This problem gets worse (processor-memory performance gap).
CPUs get faster, memories get bigger.

1.2 Memory hierarchy
Large memories are slow and fast memories are small. � Take
advantage of the principle of locality to present the user with as
much memory as is available in the cheapest technology at the
speed o↵ered by the fastest technology.

• Registers$ memory: by compiler
• Cache$ main memory: by cache controller hardware
• Main memory$ disks: by OS (VM), V-to-P mapping (TLB),

and programmer (files)

1.2.1 Locality
• Temporal: tend to be referenced again soon ! keep most re-

cently accessed data items closer to the processor
• Spatial: nearby addresses tend to be referenced soon! move

contiguous words closer to the processor
• Locality depends on type of program behavior.

1.2.2 Levels

Block (or line) is unit of copying, maybe multiple words.

• Hit: accessed data is present in upper level
– Hit ratio: hits/accesses
• Miss: if absent, block copied from lower level

– Miss ratio: misses/accesses = 1 – hit ratio
– Miss penalty: time to replace a block in that level
• Hit/miss ratio is per level.

� Average Memory Access Time (AMAT) = tHit +miss rate⇥ tMiss
(t is time i.e. latency)

� No ⇥ (1-miss rate) to hit! Miss cost = hit cost + penalty

1.3 Direct mapped cache
Each memory block has designated block in cache.

• Address mapping: (block address) modulo (no. blocks in cache)
• Tag at each cache block that contains the upper portion of the

address to identify the block

1.3.1 Example

One word block (4B), Cache size of 1K=1024 words (or 4KB).
Bits for tag? � 32 - 2 (byte o↵set) - 10 (index) = 20 bits.

• Read index [11-2]! ([31-12] = tag) & valid! Hit, get data
• Exploits temporal locality

� Address bits = Byte offset (* word size) + Cache index + Tag

1.3.2 Multiword: Adding spatial locality
� Address bits = Byte o↵set + Cache index + Tag + Block o↵set
� Cache size = 2Cache index ⇥ (Data blocks size + Tag + Valid field)
? Larger blocks...

– should reduce miss rate * spatial locality. But in fixed-sized
cache, it means less index! competition " !miss rate "

– lead to pollution, i.e. cache data not used
– miss penalty " !may override benefit of reduced miss rate.

� Sweet spot in block size (if cache size fixed)

1.4 Handling cache hit/misses
1.4.1 Load

Cache hit: CPU proceeds normally

Cache miss: Stall the pipeline, fetch block from next level of
hierarchy, and resume pipeline: (i) I$: restart instruction fetch, (ii)
D$: complete data access.

1.4.2 Store

Cache hit: keep consistent with main memory

• Write-through: always update memory! Slow, CPU is stalled
• Write-back: remember that block is modified (dirty bit), update

memory when dirty block is replaced.
� Consider for loop. Only write memory once.
– Sometimes need to flush cache: I/O, DMA, multiprocessing
• In both cases, may use write bu↵er that write to memory on

background. CPU stall only when bu↵er is full.

Cache miss: naive way is to stall pipeline, fetch block, install in cache,
update cache, and resume pipeline. But why fetch if we’re updating it?

• Write-allocate: Update cache, memory update depends on write-
through/back. Anticipate further use of block (temporal locality)
• No-write allocate: Update memory, cache unmodified

1.4.3 Multiword block considerations

Load miss: miss penalty grows as block size grows. Two solutions:

• Early restart: processor resumes execution as soon as the re-
quested word is returned
• Requested word first: complicate hardware (overhead!)
+ Nonblocking cache: allow processor to continue to access cache

while cache is handling an earlier miss ! need dependency
check, much complicated hardware

Write miss: If write-allocate, must first fetch the block from main
memory and then write the word. Or could end up with garbled
block in cache (rest of the block is old data).

Computer Organization Spring 2024 � haewonc

1.4.4 Sources of cache misses
1. Compulsory: first reference to block
! Increase block size (spatial locality)

2. Capacity: cache cannot contain all blocks accessed by program
! Increase cache size

3. Conflict (collision): multiple memory locations mapped to the
same cache location
! Increase cache size / Increase associativity

1.5 Measuring cache performance
Assuming cache hit costs are included as part of the normal CPU
execution cycle, then

CPU time = IC ⇥ CPI ⇥ CC
= IC ⇥ (CPIideal +Memory-stall cycles)| {z }

CPIstall

⇥CC

Memory-stall cycles come from cache misses. Miss penalty is
measured in processor clock cycles needed to handle a miss.

� Read-stall cycles = read/program ÷ read miss rate ÷ read miss penalty
• Same for write; can reduce write-stall cycles with write bu↵er
• For write-through caches, we can simplify this to:

� accesses/program ÷ miss rate ÷ miss penalty

Relative cache penalty increases as processor performance im-
proves (faster clock rate and/or lower CPI).

1.6 Reducing cache miss rate
1.6.1 Set-associative cache: Allow flexible block placement

Direct mapped cache is subject to conflict by only allowing a mem-
ory block to map to exactly one cache block. � Fully associative
cache allow a memory block to be mapped to any cache block

� No index anymore! Cost of tag comparison
) Only used for very small cache (8, 16 entries)

A compromise is a n-way set associative cache where a memory
block maps to a unique set of size n.

• A cache with 8 entries can be one-way i.e. direct mapped, 2-way
i.e. 4 sets, 4-way i.e. 2 sets, or 8-way i.e. fully set associative.
All same size; except slight di↵erence * metadata.
• Increased associativity reduces miss rate but with diminishing gains.

Range of set associative caches
� Cache entries = Number of sets ⇥ Set size (index)
• So if fixed-size cache, 2⇥ associativity -index bit and ++tag bit.

We need replacement policy now. Least Recently Used (LRU)
replaces the block that has been unused for the longest time. For 2-
way, need one bit per set, and set the bit when a block is referenced.
But for n-way, we’ll need more bits. Random replacement policy
gives ⇡ the same performance as LRU for high associativity.

N-way cache costs:

• N comparators (delay and area)
• Data available after set select & hit decision: MUX delay, parallel �
$ direct mapped can just assume a hit and recover later if miss

1.6.2 Multi-level caches

With advancing tech, enough room on the die (chip) for bigger L1
caches or for a second level of caches–normally a unified L2 cache
(i.e. holds both instructions and data) or even a unified L3 cache.

Two-level cache AMAT
Design considerations for L1 and L2 caches are very di↵erent

• Primary cache should focus on minimizing hit time to support
shorter CC! smaller with smaller block sizes
• Secondary cache should focus on reducing miss rate to reduce

penalty of main memory access! larger with larger blocks size,
higher associativity

1.7 Further ideas
• Victim cache: small buffer holding most recently discarded blocks
• Check write buffer and/or victim cache on read miss–may get lucky!

2 Virtual memory
Use main memory as a cache for secondary memory.

• E�cient and safe sharing of memory among multiple programs
• Easily run programs larger than the size of physical memory
� Again the principle of locality!

Each program is compiled into its own virtual address space.

• Address space is divided to pages (fixed size) or segments (variable)
• The starting location of each page (either main or secondary

memory) is contained in the program’s page table (at DRAM!)
• Page fault: VM miss i.e. page is not in physical memory

2.1 Address translation
Each memory request first requires an address translation.

Page tables can get awfully large. For 32-bit address space with
4KB pages, which means 12 bits for o↵set, we will need 220 entries.
For 4 bytes PTE, it is 4MB per process. !Multi-level page table!

Computer Organization Spring 2024 � haewonc

Disk access takes millions of cycles, so minimize page fault rate:
fully associative placement, smart replacement, etc.

Page table stores placement information.

• If page is in memory: PTE stores PPN and status bits (valid, dirty)
• If not i.e. valid=0: PTE can refer to location in swap space on disk

Page fault is handled by OS code.

1. Use faulting VA to find PTE
2. Locate page on disk
3. Choose page to replace. If dirty (� write-through is impractical),

write to disk first.
4. Read page into memory and update page table
5. Restart process from faulting instruction

Approximate LRU based on heuristic that PTEs are accessed frequently.

1. Reference bit (or use bit) in PTE set to 1 on access to page
2. Periodically clear use bit to 0 by OS
3. Evict a page with reference bit = 0

2.2 Translation lookaside bu↵er
Translation of VA to PA takes an extra memory access! expensive!
Use a TLB–a small cache on-chip that keeps track of recently used
address mappings.

• Usually fully associative
• 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss
• 0.01%–1% miss rate * access to page tables has good locality
• TLB misses have 2 cases: (i) miss could be handled by HW or

SW, (ii) true page fault (infrequent) handled by OS

Must recognize TLB miss before destination register overwritten.

It is beneficial to have separate TLB for instructions and data *
di↵erent locality. TLB can be multiple levels.

2.2.1 Can overlap the cache access with the TLB access

PA = PPN + Page o↵set
= PA tag + Cache index + Block o↵set + Byte o↵set

If bits for page o↵set � bits for cache index + block o↵set + byte
o↵set, we have all information we need to access cache before TLB.
) can parallelize TLB access with cache access, and then compare
PA tag and tag of cache entries. Then number of sets limited by
page size. To increase cache size, must increase associativity!
can make cache slower.

2.3 Hardware support
• Detection of page fault
• Dirty and reference bits update

3 Instruction-level parallelism
• Super-pipelining: more stages!
� Shorter critical path, reduce CC
� More hazard, more forwarding/hazard hardware
– Higher flush cycles for branch misprediction
– Higher L1 load-to-use latency (in cycle)! bubbles " ! CPI "
• Multiple-issue: more than one instructions at every stage

– Now CPI < 1, so use IPC (instructions per clock cycle) metric
– Speculation: guess what to do with an instruction so we start

operation ASAP.
� Data/control dependencies are more likely / Resource conflict

3.1 Static multiple-issue aka very long in word (VLIW)
• Compiler-driven: decide ins to execute simultaneously at com-

pile time (i.e. static)
• Issue packet: set of ins that bundled together. Not an arbitrary

mix; Determined by resources required and order (dependency)
! pad with noop if necessary.
• Multiple functional units, multi-ported RFs, wide program bus

3.1.1 Dual-issue VLIW MIPS

Need 4 read ports and 2 write ports and a separate memory address
adder (for load/store).

Harzards are more severe. EX forwarding will not work for two
ins in same packet. It is same for load-use hazard. ! Need more
aggressive code scheduling.

1. Eliminate if-else branch structures to predicated instructions.
(similar to ternary operator). This converts control hazard to data
hazard. Useful for VLIW.

2. Loop unrolling makes multiple copies of the loop body and ins
from di↵erent iterations are scheduled together! more ILP

Scheduled code without loop unrolling. addi precedes addu and sw. 4
CCs to execute 5 ins! IPC=1.25 ($ best case 2.0)

Computer Organization Spring 2024 � haewonc

(a) Unrolled code (b) with unrolling. 8 CCs for 14 ins. IPC=1.8

The compiler uses register renaming to solve name dependencies
and ensures no load use hazards occur. VLIW primarily depend on
the compiler for branch prediction.

3.1.2 Pros and cons
� Simpler hardware, potentially more scalable
� Programmer/compiler complexity and longer compilation
� Object(binary) code incompatibility
� Code bloat: noop/loop unrolling waste program memory space
! Big failure; Compiler cannot know much about program

3.2 Dynamic multiple-issue aka superscalar
• HW-driven. Allow the CPU to execute instructions out of order

to avoid stalls, but commit result to registers in order.
• Avoids need for compiler scheduling–though it may still help.

Example. Can start sub while addu is waiting for lw.

1. Instruction-fetch and issue (IFD unit): fetch instructions, de-
code them, and issue them to a FU to await execution
• Instruction lookahead: fetch/decode/issue ins beyond current in

2. Instruction-execution: as soon as the source operands and
the FU are ready, the result can be calculated
• Processor lookahead: complete exec of issued ins beyond curr in
• Machine parallelism: multiple FUs

3. Instruction-commit: when it is safe to, write back results to
the RFs or D$ (i.e. change the machine state)

3.2.1 Why dynamic?
• Not all stalls are predictable, e.g. cache misses.
• Branch outcome is dynamically determined

3.2.2 Output dependence: write after write
$ true dependence: read after write

Example. If addu occurs first, sub gets incorrect value

3.2.3 Antidependence: write after read
When a later instruction (that executes earlier) produces a data value
that destroys a data value used as a source in an earlier instruction.

3.2.4 Storage conflicts and register renaming

Anti- and output dependencies arise because the limited number of
registers. ! Register renaming.

• Processor: renames the original register identifier to new one
(not in visible register set). Now register names are unique. On
instruction issue to reservation station (RS),
– If operand is available in RF, reorder bu↵er, or FU output:

copy to RS (i.e. proceed)
– If not, provide again to RS (i.e. stuck)
• HW: assigns register from a pool of free registers

3.2.5 Speculation
• Predict branch and continue issuing
� Don’t commit until branch outcome determined
• Load speculation:

– Predict the e↵ective address or loaded value
– Load from ongoing store (e.g. in write bu↵er)
– Bypass (forward) stored value to load unit
! Avoid load and cache miss delay
� Don’t commit load until speculation cleared

3.2.6 Multi-issue doesn’t work as much as we’d like
• Some dependencies are hard to eliminate e.g. pointer aliasing

(two pointers pointing same value)
• Some parallelism is hard to notice * limited window size
• Memory delay and limited bandwidth! hard to keep pipeline full

4 Shared memory multi-processing
• Job-level (process-level) parallelism
• Parallel processing program (thread-level): single program run

on multiple processors (cores)

Chip multi-Processors (CMPs) contain multiple cores in single
integrated circuit (IC). Key questions:

Q1 How do they share data?
Q2 How do they coordinate?
Q3 How scalable is arch? How many processors can be supported?

Flynn’s taxonomy by data and control (instruction) streams.

• Single-instruction single-data (SISD): Uniprocessor
• SIMD: GPU, MISD: limited use-case, MIMD: most common

4.1 Communication in multiprocessors
• Message passing: explicit messaging by programmers

– Interface: MPI (message passing interface)
– Code is running in both sender and receiver
• Shared memory: dominant for small- and medium-sized MPs

– Single OS for all nodes
– Implicit communication by loads and stores
– Caches can hold copies of same addr!Cache coherence problem
– Interface: pthread, OpenMP library

4.2 Shared memory multiprocessor (SMP)
Q1 Single address space shared by all procs
Q2 Procs communicate through shared vars in memory via load/store
• Use of shared data must be coordinated via synchronization

primitives (locks) that allow access to only one proc at a time
• Uniform memory access(UMA) or nonuniform (NUMA)

– NUMA: each proc have local memory of faster access
time! harder programming but scale to larger sizes

Computer Organization Spring 2024 � haewonc

4.3 Coherence problem: Propagating writes
4.3.1 Update-based protocols
• All updates must be sent to other caches and main memory
• Huge write tra�cs through the networks to other caches
• Useful for producer-consumer communication

4.3.2 Invalidation-based protocols
• Send invalidations (e�cient!) to other caches to update
• Access to invalidated! cache miss, writer (or memory) provide data

Unit of invalidation is cache blocks. Even if only a part is updated,
need to invalidate the entire blocks. What if two procs read/write
di↵erent part to same cache block? (false sharing)! Programmers
can align data structure to cache block size

4.3.3 Two classes of invalidation-based protocols
• Cache controller determines cache state. Need to know sharing

state i.e. which caches have copy for given address?
• Snoop-based: each proc has cache controller
• Directory-based: has centralized repo (directory) of sharing states

4.3.4 Snoop-based protocol
1. Any cache miss request must be put on the bus
2. All caches and memory observe bus requests (snoop tag lookup)
3. All caches check their cache tags and put responses:
• Just sharing state (I have a copy)
• Data transfer (I have a modified copy, sending it to you!)

Two sources of cache state transition: CPU (load/store) or snoop
(request from other processors). Architecture for snoopy protocols:

• Extended cache (coherence) states in tags
• A set of wires connect all nodes and memory e.g. bus
• Serialization by bus: only one proc is allowed to send invalidation

4.3.5 MSI protocol! 2 bits required
• M (modified): valid and dirty

– Only one M copy can exist in the entire system
– Can update without invalidating other caches
– Must be written back to memory when evicted
• S (shared): produced by read, valid and clean / I (invalid)

4.3.6 MESI protocol

Load! store sequence is common. And high chance that on other
caches have a copy. Then why send BusUp when S!M?

! Add E (Exclusive) state
• Valid, clean, and no other caches have a copy of the block.
• E!M transition is free (no bus transaction).

4.3.7 Multi-level caches

If without inclusion property, must snoop both caches. But com-
monly, with complete inclusion property:

• Snoop only L2 caches first
• If snoop hits L2, forward snoop request to L1
• If L1 have dirty copy, write-back to L2 (and memory in some designs)

4.4 Synchronization
• Should tell when it’s safe for different processors to use shared data
� This is not a coherence problem. This is a semantic informa-

tion that should be provided by programmer.
• Critical section: code segment where processes/threads access

shared resource
• Synchronization prevents parallel access to critical section.
• Barrier: all threads should reach barrier to pass it
• Locks: low-level primitive to regulate access to shared data

– Critical section between acquire and release

4.4.1 Spin locks

Processor continuously tries to acquire, spinning around loop

This acquire doesn’t work. Multiple threads can pass bnez. � Mem
value shouldn’t change between load&store. ! Need atomic load& store
• Test and set: tests a value and sets it if the value passes the test
• Atomic exchange: interchange a value in a reg for a value in mem

– Synchronization variable in memory: 0 if free, 1 if locked
– acquire = set register to 1 and swap
– New value in register determines: 0 if success, else 1

� Includes a write which invalidates all other copies! bus traffic
! Start by repeatedly reading the variable. Try exchange when

it changes. (“test and test&set”)

� Read and write in 1 in makes critical path too long! use 2 ins!
� Impl: only separated by HW; SW sees as one in. Load invali-

date other caches. Until store is completed, any invalidation
from other cache is held.

• Load-linked (or locked) (LL) and store-conditional (SC)
– LL returns the initial value, SC returns 1 if succeeds i.e. no

other store to same mem location since preceding load else 0
� Impl: remember last load-locked address (lla). Invalidation

to lla from other procs set lla (iteself!) to 0. SC fail if lla is 0.

Coarse-grained lock Fine-grained lock
One for large DS Many for di↵erent parts of DS
Simple code, bad performance Di�cult code

Computer Organization Spring 2024 � haewonc

5 I/O and bus

Reasons for I/O: user inter-
face, data transfer, commu-
nication, sensor/control

Overview. How do CPUs talk to I/O?

5.1 I/O mechanisms
5.1.1 I/O Port Registers (special purpose)

• Dedicated register for I/O
� Easy to use, low latency
� Not generally applicable

5.1.2 Memory-Mapped I/O: a general approach

• Abstract all I/O devices as memory.
• Map a subset of unused memory ad-

dresses to registers of external devices
• Load/store instructions perform I/O
• Memory and devices on bus respond

only to their own address ranges

� Idempotency: Memory load/store semantics are idempotent. How-
ever, reading/writing a device register can imply other state changes.

� Cache can go very wrong. Usually disallow on mmap addresses.
� Slow and consumes CPU cycles. The unit of lw is too small!

5.1.3 Direct memory access (DMA)

� Allow I/O device read/write large blocks from/to memory di-
rectly! CPU only issue commands to DMA engine.

• Use PA: No translation necessary, but pages can be interleaved.
! DMA command unfriendly.
• Use VA: DMA command friendly. Can copy any size.

But requires translation.
� OS can allocate contiguous pages for DMA
� Smart DMA engines: OS creates in memory a linked-list

of commands for moving contiguous blocks

5.1.4 Which I/O mechanism to use?
Performance considerations

Raw bandwidth Setup overhead Suitable when transfer size
DMA High Large Large
mmap Low No Small

CPU considerations: Fraction of I/O, How long can I/O wait?

5.2 When to serve I/O?
• Polling I/O: CPU keeps checking.

– Consider a keyboard device with 2 mmap registers:
* READY: A read returns true if a new character is available
* DATA: A read returns the new character typed and resets
READY if no more characters are available

– Most of the time nothing happens. Ine�cient for infrequent,
but latency-sensitive I/O events

• Interrupt-Driven I/O: doesn’t bother CPU, but costs " cycles
– Interrupt vector holds the reason of interrupt
– I/O interrupt! CPU switch to interrupt handler
! Suitable for very infrequent (any human input interface), very

long-latency operations (e.g. end of DMA transfer)

5.3 Bus
• A common datapath connecting multiple devices! Reducing

interconnection cost
• Single driver, multiple receivers at a time
• Time-multiplexed by transactions! Bandwidth is shared
• Protocol: a set of handshake signals
• Devices: master initiate transactions, slaves respond, arbiter

manages shared bus usage (special)

5.3.1 Bus transactions
1. Master requests ownership for the bus by asking arbiter
2. Arbiter grants ownership to master
3. Master drives address for all to see
4. Slave claims transaction (i.e. “that address belongs to me”)
5. Master/slave drives data (depending on read/write) for all to see
6. Master terminates the transaction and bus ownership

5.3.2 Basic bus signals
• CLK: all devices synchronized by a common clock
• Private signals to/from arbiter per master:

– REQ (output): assert to request ownership; de-assert to signal
the end of transaction

– GNT (input): ownershipis granted
• Broadcast signals shared by all devices

– R/W (bi-directional): bus commands e.g. read, write
– AD (address/data bus, bi-directional): ma drives address during

address phase, ma/sl drives data during data phase

5.3.3 Asynchronous bus protocols

We assumed slave can decode address in 1 cycle and respond in 1 cycle.
Realized only with fixed-latency protocols!Async handshaking!
• Driver only asserts MRDY when AD

value is valid. Receiver only asserts
SRDY when ready to accept AD value
• A bus cycle is valid if MRDY and SRDY
• Receiver only pays attention if the

driver is ready. Driver repeats value
until the receiver is ready Async read transaction

5.3.4 Performance
• Latency: Request/grant latency is fn of bus contention and arbitra-

tion strategy. Transaction latency is fn of slave reaction time.
• Throughput/bandwidth: N-byte bus at freq f has peak bandwidth

N f . Each transaction has overhead cycles; can be amortized.

5.3.5 Error (bit-flip) detection
The parity (number of 1’s mod 2) bit for receiver to check. Guaranteed
to detect odd flips but not even flips or identify which bits flipped.

Computer Organization Spring 2024 � haewonc

A Problems
A.1 Slide 10
A.1.1 p.20-23

8-blocks, 1 word/block, direct mapped. For all access, determine
hit/miss and cache block. Fill in the two tables. For data, the format
is Mem[10110].

Word addr Binary addr Hit? Cache block
22 10 110 Miss 110
26
16
3
16
18

A.1.2 p.27

2-words direct mapped cache of size 2. Tag is 2 bits. Text means
word address. Address is 4 bits. Why? Fill in the blank, indicate
hit/miss and cache eviction.

A.1.3 p.31

How many total bits are required for a direct mapped cache with
16KB of data and 4-word blocks assuming a 32-bit address?

A.2 Slide 11
A.2.1 p.9

A processor with a CPIideal of 2, a 100 cycle miss penalty, 36%
load/store instr’s, and 2% I$ and 4% D$ miss rates. What is CPIstall?

• What if the CPIideal is reduced to 1? 0.5? 0.25?
• What if the D$ miss rate went up 1%? 2%?
• What if the processor clock rate is doubled (doubling the miss

penalty)?

A.2.2 p.23

A processor with a CPIideal of 2, a 100 cycle miss penalty (to main
memory) and a 25 cycle miss penalty (to L2$), 36% load/stores, a
2% (4%) L1 I$ (D$) miss rate, add a 0.5% L2$ miss rate. What is
CPIstall?

A.2.3 p.15-16

Compare 4-block caches: Direct-mapped, 2-way set associative,
and fully associative. Block access sequence is 0, 8, 0, 6, 8 (ad-
dress). No byte o↵set. For cache content the format is Mem[6].

A.2.4 p.26-27
• CPU base CPI = 1, clock rate = 4GHz
• L1 miss rate/instruction = 2%
• Main memory access time = 100ns
• L2 cache access time = 5ns
• Global miss rate to main memory = 0.5%

What is miss penalty (as in cycles) and e↵ective CPI with

1. Just primary cache?
2. L2 cache?

A.2.5 Bonus: LRU for n-way cache

? How many bits need to implement true LRU in n-way cache?
� Assume a 4-way cache. We want to remember a whole order of
accession. Then there are 4! = 24 permutations. So we need 5 bits.
So we need dlog n!e bits. ? Now think about the access update
and decoding logic for this.

A.3 Slide 11
A.3.1 p.20

A.3.2 p.23

? Cache tag uses physical address, so need to translate before cache
lookup. Why not a virtually addressed cache, which would only
require address translation on cache misses?

� Two programs which are sharing data will have two di↵erent
virtual addresses for the same physical address–aliasing–so have
two copies of the shared data in the cache and two entries in the
TLB which would lead to coherence issues.

Computer Organization Spring 2024 � haewonc

A.4 Slide 13
A.4.1 p.4

A 6 GHz, four-way multiple-issue processor can execute at a peak
rate of 24 billion instructions per second with a best case CPI of
0.25 or a best case IPC of 4.

A.5 Slide 14
A.5.1 p.6

Tnew = Tparallelizable/100 + Tsequential

Speedup =
1

(1 � Fparallelizable) + Fparallelizable/100
= 90

100 processors, the F (fraction) of sequential part for 90⇥ speedup?

A.5.2 p.7-8

Workload is sum of 10 scalars (sequential) and 10÷10 matrix sum
(parallelizable). Speedup if 10 processors? if 100 processors?
What if 100÷100 matrix?

A.5.3 p.32

A.5.4 p.37

B T/F
• Larger cache size always reduce the miss rate. (T)
• Larger cache size increases the access time. (T)
• Instruction cache has write port. (F)
• The memory speed is unlikely to improve as fast as processor

cycle time. (T)
• As you increase level of memory hierarchy, worst case penalty

increase. (T) But CPI decreases / is beneficial because it is very
unlikely to reach that worst level (* miss rate is multiplied in
AMAT). (T)
• The miss penalty of the L1 cache is significantly reduced by the

presence of an L2 cache – so it can be smaller (i.e., faster) but
have a higher miss rate. (T)
• The L2$ hit time determines L1$’s miss penalty. (T)
• L2$ local miss rate >> global miss rate. (T)
• In inclusive cache, lower level memory always contain data of

higher level memory. (T)
• Page fault handler is in hardware. (F)
• TLB misses are much more frequent than true page faults. (T)

• TLB miss handled by OS is slower but more flexible. (T)
• Processes cannot access physical memory directly, but only

through translation by the page table. (T)
• Page fault is detected by hardware (and then handled by OS). (T)
• In VLIW, we need n PCs to handle n issues. (F)
• Noops don’t count towards performance when calculating IPC

of multi-issue processors. (T)
• Loop unrolling reduces the number of conditional branches. (T)
• In superscalar, if exceptions occur the only registers updated

will be those written by instructions before the one causing the
exception. (T)
• Antidependence is like true dependence but reversed.
• A single device could have both master and slave functions. (T)
• A memory is always slaves. (T)
• A CPU is always slaves. (F)
• REQ/GNT is an example of asynchronous handshake. (T)

	Cache
	The memory bottleneck
	Memory hierarchy
	Locality
	Levels

	Direct mapped cache
	Example
	Multiword: Adding spatial locality

	Handling cache hit/misses
	Load
	Store
	Multiword block considerations
	Sources of cache misses

	Measuring cache performance
	Reducing cache miss rate
	Set-associative cache: Allow flexible block placement
	Multi-level caches

	Further ideas

	Virtual memory
	Address translation
	Translation lookaside buffer
	Can overlap the cache access with the TLB access

	Hardware support

	Instruction-level parallelism
	Static multiple-issue aka very long in word (VLIW)
	Dual-issue VLIW MIPS
	Pros and cons

	Dynamic multiple-issue aka superscalar
	Why dynamic?
	Output dependence: write after write
	Antidependence: write after read
	Storage conflicts and register renaming
	Speculation
	Multi-issue doesn't work as much as we'd like

	Shared memory multi-processing
	Communication in multiprocessors
	Shared memory multiprocessor (SMP)
	Coherence problem: Propagating writes
	Update-based protocols
	Invalidation-based protocols
	Two classes of invalidation-based protocols
	Snoop-based protocol
	MSI protocol 2 bits required
	MESI protocol
	Multi-level caches

	Synchronization
	Spin locks

	I/O and bus
	I/O mechanisms
	I/O Port Registers (special purpose)
	Memory-Mapped I/O: a general approach
	Direct memory access (DMA)
	Which I/O mechanism to use?

	When to serve I/O?
	Bus
	Bus transactions
	Basic bus signals
	Asynchronous bus protocols
	Performance
	Error (bit-flip) detection

	Problems
	Slide 10
	p.20-23
	p.27
	p.31

	Slide 11
	p.9
	p.23
	p.15-16
	p.26-27
	Bonus: LRU for n-way cache

	Slide 11
	p.20
	p.23

	Slide 13
	p.4

	Slide 14
	p.6
	p.7-8
	p.32
	p.37

	T/F
	Project 3
	Project 4

