
Computer Organization Spring 2024 � haewonc

1 Basics of Logic

1.1 Gates, truth tables, and logic equations
• Signals are either true/1/high voltage, or false/0/low voltage
• Combinational block: lack memory and depends only on input
• Sequential logic: includes block with state, i.e memory
• Truth table define outputs for each possible set of input (2n)

1.1.1 Boolean algebra

Express the logic function with logic equation. All the variables
have the values 0 or 1 and there are 3 operators:

• OR (A + B) or logical sum
• AND (A · B) or logical product
• NOT (Ā) or inversion/negation

1.1.2 Gate

Logic blocks are built from gates that implement basic logic func-
tions. AND and OR gates are commutative and associative→ can
have multiple inputs.

AND gate, OR gate, and an inverter. Rather than explicitly drawing
inverters, can add bubbles to the inputs or outputs of a gate.

• Can build any logical function using AND, OR, and inversion
• Any logic function can be represented as a sum of products

(canonical forms). � Sum all true output entry of truth table,
which is essentially a product term.
• NOR, NAND are universal: can build any function using one type

1.2 Combinational logic
• Encoder/decoder: n-bit input↔ 2n output (one-hot)
• Multiplexors: choose one of input values depending on a selec-

tor (or control) value
– Can construct with decoder, n AND gates, and single OR

to (In1 · Out1) + · · · + (Inn · Outn)

1.2.1 A full adder

Can build multiple bit adder by connecting 1-bit adder.

(a) 1-bit adder (b) Ripple-carry adder

1.3 State machine

State machine.

Computer is a finite state machine (FSM).

Modulo-3 counter
• Counter enabled when EN=1
• UP or DOWN mode: decrease counter when M=1
• State is 2 bits (00, 01, 10)

1.4 Elements
• Clock is free-running signal with a fixed cycle time.
• Latch: state changes when the enable is asserted
• Flip-Flops: state change only on a clock edge (rising or falling).

Register is collection of flip-flops connected in parallel. Primary
state-holding elements in a processor.

2 Introduction

2.1 6 great ideas in computer architecture
• Abstraction: Instruction set arch (ISA) is HW/SW interface
• Moore’s law: transistors on single chip 2× about every 2 years

– Transistors: electrical switch/building block of integrated circuits
– Faster/smaller transistors→ clock frequency improvement
– Instruction-level parallelism (ILP)

� Almost still valid but power and heat limits clock frequency
• Memory hierarchy (Principle of locality)
• Parallelism: data-, memory-, and instruction-level

– HW systems are inherently parallel
• Performance measurement: determine the design based on

performance, cost, and design complexity
• Dependability/reliability via redundancy

Computer system abstraction

2.2 Computer architecture
Instruction set architecture (ISA)

• Interface between HW and SW systems
• Hard to change due to compatibility issues
• Various ISAs: MIPS, x86, Power, ARM, RISC-V, etc
• ISA evolves: Intel and AMD have been extending x86 (32 and

64bit support, VM support)

Microarchitecture is implementation of ISA and affects performance.

Computer Organization Spring 2024 � haewonc

2.3 Performance
What factors in the architecture contribute to overall system perfor-
mance and the relative importance (and cost) of these factors?

• Throughput (bandwith): the time between the start and the
completion of the task→ interest of individual users
• Response time (execution time): total amount of work done in

a given time→ interest of managers

2.3.1 Defining performance

Performance = 1 / Execution time

Operation of digital hardware is governed by a constant-rate clock.

• Clock period: duration of a clock cycle (CC)
• Clock frequency/rate (CR): cycles per second

CC = 1/CR

• CPU execution time (CPU time): time the CPU spends working
on a task = # CPU clock cycles / CR
• Clock cycles per instruction (CPI): the average number of clock

cycles each instruction takes to execute

CC = # instructions * CPI

∴ CPU time =
Instruction count × CPI

CR
or = Instruction count × CPI × CC

→ separate the three key factors that affect performance.

• Can measure CPU time by running the program
• CR is usually given
• Can measure overall instruction count by using profilers or sim-

ulators without knowing all of the implementation details
• CPI varies by instruction type and ISA implementation for which

we must know the implementation details

2.3.2 Amdahl’s law

Improving an aspect of a computer and expecting a proportional
improvement in overall performance.

Timproved =
Taffected

improvement factor
+ Tunaffected

Consider a program which A takes 80s and B takes 20s. We cannot
make a program 5× faster by improving only A.

2.4 Multiprocessors
Explicit parallel programming.↔ instruction level parallelism (ILP).

• Hardware executes multiple instructions at once
• Hidden from the programmer
• Load balancing, Optimizing communication and synchronization

3 Instruction set architecture
Contract between programmer and the hardware. Defines visible
state of the system and how they changes in response to instructions.
ISA specifies:

• All architecturally visible states: registers, condition codes, etc
• Instruction formats and behaviors
• Memory model (paging, segmented memory, etc)
• IO (interrupts)

3.1 MIPS-32 ISA
• Instructions: computational, load/store, jump, branch, FP, memory
• 32 registers (R0-R31), PC, HI, LO
• Regularized: 3 instruction formats (R, I, J)

3.2 Operands
3.2.1 Number of explicit operands

• 3: 1 results + 2 inputs e.g. R1 = R2 + R3→ ADD R1, R2, R3
• 2: 1 result/input + 1 input e.g. R1 = R1 + R2→ ADD R1, R2
• 1: implicit accumulator + 1 input e.g. acc = ac + R1→ ADD R1
• 0 (stack ISA): Add top 2 elements of stack→ ADD

Number of operands affects instruction length.

3.2.2 Register operands

MIPS register file holds 32 registers.

• 5-bit address (or number) ∵ 25 = 32, 32-bit write data
• 2 read ports, 1 write port

Registers are

• Faster than main memory (locality)
• Easier for compiler to use (↔ stack)
• Read/write port increase impacts speed quadratically→ number

of operands is limited

3.2.3 Memory operands

Main memory used for composite data e.g. array.

• Byte-addressed: each address identifies an 8-bit byte
• Words are aligned in memory: Address must be a multiple of 4
• MIPS is big endian: most significant byte at least address of a word

Operating on memory data requires
load/store→ more instructions

3.2.4 Immediate operands

addi $s3, $s3, 4

• No subtract immediate instruction. Use a negative constant.
• Constant can have less bit→may need sign extension before addition

3.2.5 The constant zero

Register 0 ($zero) is the constant 0 and cannot be overwritten. Useful
for common operations e.g. move between registers add $t2, $s1,
$zero. ∴ Move is a pseudo-instruction achieved by adding zero.
(abstraction for human).

Computer Organization Spring 2024 � haewonc

3.3 Representing instructions
Instructions are encoded as 32-bit instruction words, called machine
code. Assembler names corresponds to regs as below.

• Temporary: $t0-$t7 are registers 8–15, $t8-$t9 are 24-25
• Saved variables: $s0-$s7 are 16–23

3.3.1 R-format instructions

op rs,rt+ rd+ shamt funct

6 bits 5bits each 5 bits 5 bits 6 bits
opcode 1st/2nd source destination shift amount function code

Function code extends operation code (opcode). +as an register number.

R-format example: add $t0, $s1, $2

op rs rt rd shamt funct

special $s1 $s2 $t0 0 add

0 17 18 8 0 32
000000 10001 10010 01000 00000 100000

3.3.2 I-format instructions

Immediate arithmetic and load/store instructions.

op rs rt constant or address
6 bits 5bits 5 bits 16 bits

• rt: destination or source register number
• if constant: −215 ∼ +215 − 1
• if address: offset added to base address in rs

3.3.3 J-format instructions

op address
6 bits 26 bits

3.4 Operations
3.4.1 Logical operations

MIPS C Operation
sll, slr «, » Shift left, right
and/andi, or/ori, nor &,|, ∼ Bitwise AND, OR, NOR

These shifts are logical: fill with 0 bits. NOT is achieved via nor
e.g. nor $t0, $t1, $zero.

3.4.2 Conditional operations

Branch to a labeled instruction L1 if a condition is true. Otherwise,
continue sequentially.

• beq rs, rt, L1: if rs == rt
• bne rs, rt, L1: if rs != rt
• j L1: unconditional jump

Set result to 1 if condition is true, otherwise 0. Use in combination
with beq, bne.

• slt rd, rs, rt: if rs<rt set rd
• slti rt, rs, C: if rs<C set rt
• Unsigned operations sltu, sltui

? Why not blt, bge? Hardware for <,≥ slower than =,,.

(a) if-else compiled (b) while compiled

3.4.3 Basic block

A basic block is a sequence of instructions with

• No embedded branches (except at end)
• No branch targets (except at beginning)

A compiler identifies basic blocks for optimization.

3.5 MIPS (RISC) design principles
1. Simplicity favors regularity: fixed size ins, few ins formats
2. Smaller is faster: limited ins/reg/addressing modes
3. Make common case fast: arithmetic operands from reg, immediate ins
4. Good design demands good compromises: 3 ins formats

3.6 Assembling
• Branching is PC-relative. Once pseudo-instructions are replaced

by real ones, we know how far it should jump
• Forward reference problem: Labels may exist forward in the

program→ take 2 passes, first to remember position of labels,
second to generate code

Jumps require absolute address. References to static data can’t be
known while assembling a single file.

3.6.1 Symbol and relocation tables

• Symbol table: list of items that can be used by the code in this
file and in other files
– Labels: function calling
– Data: global variables in the .data section
• Relocation table: list of items that this file needs from other

object files or libraries
– Any label jumped to: j or jal
– Any piece of data in static section

3.7 Procedure calls
3.7.1 Stack basics

• Part of memory to store local variables in function
• Grows down
• Each procedure call creates a stack frame
• On function exit, remove the stack frame by moving SP

3.7.2 Execution of a procedure

1. Main routine (caller) places parameters in a place where proce-
dure (callee) can access
• $a0-$a3: four argument registers

2. Caller transfers control to the callee (SP)
3. Callee acquires the storage resources needed
4. Callee performs the desired task
5. Callee places the result value in a place where caller can access
• $v0-$v1: two value registers for result

6. Callee returns control to the caller
• $ra: return address register to return to point of origin = PC+4

Computer Organization Spring 2024 � haewonc

MIPS register convention

3.7.3 Procedure instructions

Procedure call jal ProcedureAddr

• Save PC+4 in register $ra procedure return
• Jumps to target address
• J format: op=0x03

Procedure return jr $ra

• Copies $ra to PC
• Can also be used for computed jumps (switch statement)
• R format: op=0x0, rs=0x1f, funct=0x08

3.7.4 Spilling registers

What if the callee needs to use more registers than allocated to
argument and return values? → use stack

• Push: $sp = $sp-4, data on new $sp
• Pop: Get data at $sp, $sp = $sp+4

3.7.5 Leaf procedure example

1 int leaf_example (int g, h, i, j) { // in $a0,...$a4
2 int f; // in $s0, save on stack
3 f = (g+h)-(i+j);
4 return f; } // result in $v0

3.7.6 Non-leaf procedures

• Procedures that call other procedures
• For nested call, caller needs to save on the stack

– its return address
– any arguments and temporaries needed after the call
• Restore from the stack after the call

1 int fact (int n) {
2 if (n<1) return 1;
3 else return n * fact(n-1); }

3.8 Memory addressing modes
How to specify memory location = calculate effective address

• Immediate: R4← Imm (read Imm and save it to register)
• Register indirect: R4← Mem[R1]
• Displacement: R4← Mem[R1+Disp]
• Indexed: R4← Mem[R1+R2]
• Memory indirect: R4← Mem[Mem[R1]]
• Autoincrement: R4← Mem[R1], R1← R1+d
• Scaled: R4← Mem[R1+R2*scale]

Effect on instruction count→ size of binary (instruction footprint).
MIPS only support displacement mode. x86 support displacement,
indexed, and scaled mode.

3.9 Memory layout
• Text: program code
• Static data: global variables
• Dynamic data: heap
• Stack: automatic storage

3.10 Misc.
Character data. Byte-encoded character sets. ASCII (8bit) con-
tains 128 characters. → Byte/halfword operations

• lb rt, offset(rs) load offset(rs), take 1byte and sign-extend
• lbu does zero-extend, sb is for store.
• lh, lhu, sh does same thing for 2bytes.

Null-terminated string copy example

1 void strcpy (char x[], char y[]) { // in $a0, \$a1
2 int i = 0; // in $s0
3 while ((x[i]=y[i])!=’\0’) i += 1; }

32-bit constants. Most constants are small→ 16-bit immediate is
sufficient. For the occasional 32-bit constant:

3.11 Addressing
3.11.1 Branch addressing

Branch instructions specify opcode, two registers, and target ad-
dress. Most branch targets are near branch→ 16 bits is sufficient.
� PC-relative addressing: target address = PC + offset × 4. PC
already incremented by 4 by this time.

3.11.2 Jump addressing

Jump (j and jal) targets could be anywhere in text segment.

� (Pseudo) Direct jump addressing: target address = leftmost 4
bits from PC + instruction ×4→ assumes that target is not that far.

Computer Organization Spring 2024 � haewonc

3.12 Sort example
1 void swap(int v[], int k) {
2 int temp;
3 temp = v[k];
4 v[k] = v[k+1];
5 v[k+1] = temp; }
6 void sort (int v[], int n) {
7 int i, j;
8 for (i = 0; i < n; i += 1) {
9 for (j = i-1; j >= 0 && v[j] > v[j+1]; j -= 1)

10 swap(v,j); }}

swap procedure is leaf. v in $a0, k in $a1, temp in $t0

sort is non-leaf. v in $a0, k in $a1, i in $s0, j in $s1.

3.13 Producing an object module
Assembler (or compiler) translates program into machine instructions.

3.13.1 Linking produces an executable image

1. Merges segments
2. Remove labels (determine their addresses)
3. Patch location-dependent and external references

Program can be loaded into absolute location in VM space.

3.13.2 Load a program: From image file on disk into memory

1. Read header to determine segment sizes
2. Create virtual address space
3. Copy text and initialized data into memory
• Or set page table entries so they can be faulted in

4. Set up arguments on stack
5. Initialize registers (including $sp, $fp, $gp)
6. Jump to startup routine
• Copies arguments to $a0, ... and calls main
• When main returns, do exit syscall

3.14 RISC (reduced) vs. CISC (complex)
MIPS is RISC, x86 is CISC. Before RISC, people wanted to reduce se-
mantic gap between HW and high-level PLs.→ bad idea. Compilers
are good at making fast code from simple instructions. RISC pushes
the complications to compilers and software. CISC has complications
in ISA. Backward compatibility: Instruction set only increase.

4 Processor
Microarchitecture is implementation of ISA. We will examine two
implementations of simple subset of MISC:

• Memory reference: lw, sw
• Arithmetic/logical: add, sub, and, or, slt
• Control transfer: beq, j

Generic implementation:

1. Use PC to supply the instruction address and fetch the instruc-
tion from memory (and update PC)

2. Decode the instruction (and read registers)
3. Execute the instruction

All instructions except j use the ALU (actual computation) after
reading the registers.

4.1 Clocking
The clocking methodology defines when data in a state element is
valid and stable relative to the clock

• State elements: a memory element such as a register
• Edge-triggered: all state changes occur on a clock edge

Assumes state elements are written on every clock cycle; if not,
need explicit write control signal.

4.2 Datapath and control
4.2.1 Single cycle design

Fetch, decode and execute each instructions in one clock cycle

• No datapath resource can be used more than once per instruction,
so some must be duplicated, e.g. instruction memory (IM) and
data memory (DM), several adders
• Multiplexors needed at the input of shared elements with control

lines to do the selection
• Write signals to control writing to register file (RF) and DM

� Simple and easy to understand
� Wasteful. Cycle time is determined by length of the longest path.

4.2.2 Instruction critical (longest) path

What is the clock cycle time assuming negligible delays for muxes,
control unit, sign extend, PC access, shift left 2, wires except:

IM Reg Rd ALU Op DM Reg Wr Total
R 200 100 200 100 600
lw 200 100 200 200 100 800
sw 200 100 200 200 700
beq 200 100 200 500

j 200 200
lw is critical path

Computer Organization Spring 2024 � haewonc

• Not feasible to vary period for different instructions
• Violates design principle – Making the common case fast
∵ lw is much rare than R-type instructions

4.2.3 How to generate control signals

• Microcoded control
– Control signals defined in a small memory inside the processor
– Flexible (can be updated after the processor is manufactured)
– Slow, used in old CISC processors
• Hardwired control

– Generate control signal from combinatorial logics
– Fast, but cannot be changed
– Used in RISC (cannot make so many logics for CISC)

4.3 Pipelining (ILP)
Fetch and execute more than one instruction at a time. Under ideal
conditions and with a large number of instructions, the speedup is
≈ to number of pipe stages. � Ideal means we do all stages for
different instructions. So CPI remains same as 1, but CC is reduced.

4.3.1 5 stages of instruction

Multiple tasks operating simultaneously using different resources.

Stage Description Resource
IFetch (IF) Instruction fetch and update PC IM
Dec (ID) Registers fetch and instruction decode Reg
Exec (EX) Execute or calculate memory address ALU
Mem Read/write the data from/to DM DM
WB Write the result data into RF Reg

4.3.2 A pipelined MIPS processor

Start the next instruction before the current one has completed.

• Improves throughput: total amount of work done in a given time
• Instruction latency (execution /response time, etc) is increased.
∵ CC (pipeline stage time) is limited by the slowest stage. Some

stages doesn’t need to whole CC e.g. WB.
∵ Overhead to divide instruction to different stages (tlatch)
– For some instructions, some stages are wasted i.e. nothing happens.

Latency of lw increased (800ps→ 1000ps).

4.3.3 Formalization

• Single cycle design: tclk = tF + tD + tX + tM + tW
• Pipelining: tclk = max(tF , tD, tX , tM , tW) + tlatch

Reg on the right half is Dec (read), left half is WB (write). So can
access RF for two different instructions.

� Suppose we execute 100 instructions.

• Single cycle machine: 45ns/cycle × 1 CPI × 100inst = 4500ns
• Ideal pipelined: 10ns/cylce × (1 CPI × 100 + 4 cycle drain) = 1040ns

Cycle drain/pipeline fill: initial number of cycles that cannot run all stages.

4.3.4 MIPS ISA designed for pipelining

• All instructions are 32-bits→ easier to fetch and decode in one
cycle. ↔ x86 has 1- to 17-byte instructions.
• Few and regular instruction formats → Can decode and read

registers in one step
• Load/store addressing: calculate address in Exec (3rd stage) and

access memory in Mem (4th stage).
• Alignment of memory operands. You always read one word. →

Memory access takes only one cycle.

4.3.5 MIPS piepline datapath

State registers between each pipeline stage to isolate them. Feed
in next cycle.

• The write addr passed to all state reg-
isters for WB in future. If not, we will
write in wrong register. (right)
• All control signals determined during

Decode and held in the state registers.

Control classified to EX/MEM/WB

4.4 Pipeline hazards
• Structural hazards: attempt to use the same resource by two

different instructions at the same time. We already solved two:
– We separated IM and DM (as two different caches)
– We separated RF read and write (each consumes half cycle)
• Data hazards: attempt to use data before it is ready

– An instruction’s source operand(s) are produced by a prior
instruction (R or lw, two cases) still in the pipeline

RF read of or in same cycle is fine, sub/and aren’t. 2 cycles stall needed.

Computer Organization Spring 2024 � haewonc

• Control hazards: attempt to make a decision about program
control flow before (i) the condition has been evaluated (branch
or not?) and (ii) the new PC target address calculated.

Can resolve hazard by waiting or bubble/stall. But impacts CPI.

4.5 Data forwarding/bypassing
Take the result from the earliest point that it exists in any of the
pipeline state registers and forward it to the functional units that
need it that cycle. Need multiplexors and the proper control.

4.5.1 EX forwarding

ALU input come from not only ID/EX but also EX/MEM and
MEM/WB.

EX forward unit. Instruction order is A→B→C. A results is in
MEM/WB. B is in EX/MEM. C is in ID/EX. Control for EX of C is...

1 if (EX/MEM.RegWrite // B will write sth in future
2 and (EX/MEM.RegisterRd != 0) // B will write in rd
3 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
4 ForwardA = 10
5 if (MEM/WB.RegWrite // A will write sth in future
6 and (MEM/WB.RegisterRd != 0) // A will write in rd
7 and (EX/MEM.RegisterRd != ID/EX.RegisterRs) // Both

A, B can change Rs. Need to choose most recent one.
So ensure B is not writing.

8 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
9 ForwardA = 01 // so we have 2-bit signal

10 // Exactly same for Rt, just ForwardB varaible

Achieve CPI=1 even in the presence of data dependencies.

4.6 Load-use data hazards
Forwarding can solve series of R-format instructions on same reg-
ister, but not immediate usage after lw. → Need a hazard detection
unit in the ID stage that inserts a stall between load and its use.

ID hazard detection unit

1 if (ID/Ex.MemRead
2 and ((ID/EX.RegisterRt = IF/ID.RegisterRs)
3 or (ID/EX.RegisterRt = IF/ID.RegisterRt)))
4 stall the pipeline

4.6.1 Implementing stall

• Prevent instructions in IF and ID stages from progress.→ Prevent
PC and IF/ID register update by disabling write (control signal).
• Insert bubble or noop = set control bits in EX, MEM, and WB

control fields to 0→ nothing will happen!
• Let lw and the instructions after it in the pipeline (before it in

the code) proceed normally down the pipeline

The datapath with forwarding and hazard detection unit.

4.6.2 Memory-to-memory copies

For consecutive lwsw, can avoid a stall by adding forwarding hard-
ware from the MEM/WB register to the DM input. Would need to
add a forward unit and a mux to the MEM stage.

4.7 Code scheduling
Reorder code to avoid use of
load result in next instruction.
A=B+E;C=B+F;

4.8 Control hazard
4.8.1 Jumps incur one stall

Jumps are unconditional. In most cases jump target is not PC+4.
Since jump is not decoded until ID, one flush is needed. New
control path (and IF.Flush bit) from control unit to new mux
between IM and IF/ID register. Choose between fetched instruction
and noop. Fortunately, jumps are very infrequent.

4.8.2 Moving branch decision earlier

Branching is decided after ALU, at Mem.

• Should flush 3 instrs. We have ID.Flush, EX.Flush bits now.
� In MIPS, state changing operations are at the end (Mem and

WB) so flushed instructions haven’t changed the machine state

Decision at EX = 2 stalls. Instead of getting comparison result
from ALU in Mem stage, connect ALU inputs to AND gate and
connect mux which is controlled by ID/EX register.

Decision at ID = 1 stall.

• Need forwarding hardwares. Register values that decides condi-
tion may be modified by preceding instructions still in pipeline.
– MEM/WB forwarding is not needed, RF write is before read
– EX/MEM should be forwarded. Same as EX forward unit,

only EX/MEM.RegWrite replaced to IDcontrol.Branch and
ForwardA/B=10 to ForwardC/D=1.

– If instruction immediately before branch produces one of the
branch source operand, then stall need to be inserted in between.

• Computing branch target address can be in parallel with RF read
• Comparing registers should be done after RF read, so comparing

and updating PC adds a mux, a comparator, and AND gate→
increase CC, but CPI is reduced

For deeper pipelines, branch decision points can be even later,
incurring more stalls. So we might want to sacrifice CC for CPI.

The datapath with ID forwarding unit

4.9 Static branch prediction
Resolve branch hazards by assuming a given outcome w/o waiting
to see actual outcome.

Computer Organization Spring 2024 � haewonc

1. Predict not taken: always fetch PC+4, flush instructions if
branch should be taken

2. Predict taken: need to know the branch target address (BTA) =
need a stall→ or cache! (see below)

Falling through the loop is more common. So predict not taken
works well for top loop, but not for bottom loop.

(a) Top of loop. Has j,→ stall. (b) Bottom of the loop

Branching structures

As the branch penalty increases (for deeper pipelines), a simple
static prediction scheme will hurt performance.

3. Dynamic branch prediction with a branch prediction buffer (or
branch history table (BHT)) in the IF stage
• Addressed by the lower bits of the PC
• Store bit: whether branch was taken last time it was executed

A branch target buffer (BTB) in the IF stage
cache the instruction. � If BTB cache BTA,
IM should have two read port: one for fetching
PC+4, one for fetching BTA. This is expensive.

4.9.1 Prediction accuracy

1-bit predictor. Assume predict bit = 0. It will be incorrect twice:
first time through the loop and exiting the loop. � For 10 times
through the loop, and the branch is taken 9 times, accuracy is 80%.

Consider a nested loop. TTTT NT
TTTT NT... We can improve to
90% accuracy by 2-bit predictor.
Must be wrong twice before chang-
ing preidction.

4.10 Exceptions
Exceptions (or interrupts) are just another form of control hazard.

• Interrupts: asynchronous to program execution; external cause
– May be handled between instructions, so can let the instruc-

tions currently active in the pipeline complete before passing
control to the OS interrupt handler

– Simply suspend and resume user program
• Traps (exception): synchronous to program execution; internal cause

– The pipeline has to stop executing the offending instruction,
midstream in the pipeline:
* Let all prior instructions complete
* Flush all following instructions
* Set a register Cause to show the cause of the exception
* Set a register EPC the address of the offending instruction
* Jump to a prearranged address of trap handler code

– OS looks the cause of the exception and deals with it. The
offending instruction may be retried (or simulated by the OS)
and the program may continue or aborted.

Exception cause Stage Sync?
Arithmetic overflow EX ✓
Undefined instruction ID ✓
TLB or page fault IF, Mem ✓
I/O service request any ✗
Hardware malfunction any ✗

Multiple exceptions can occur simultaneously in a single cycle!
Hardware sorts the exceptions so that the earliest instruction is the
one interrupted first.

4.10.1 MIPS to handle exceptions

• Signals CauseWrite/EPCWrite to control writes to registers Cause/EPC
• Expand PC input mux; new input is wired to exception handler address

The datapath with controls for exceptions

5 Cache
Memory technology Access time cost/GB
Static RAM (SRAM) 0.5-2.5ns 2K-5K$
Dynamic RAM (DRAM) 50-70ns 20-75$
Magnetic disk 5-20ms 0.2-2$

SRAM DRAM
Used for Cache Main memory
Density Low (6) High (1)
Power Higher Lower
Content Static (last forever) Dynamic (refreshed regularly)

SRAM vs. DRAM. 1Number of transistor cells.

5.1 The memory bottleneck
• Typical CPU clock rate is 2GHz (=0.5ns cycle time).
• Typical DRAM access time is 30ns ≈ 60 cycles.
• Typical main memory access is 100ns (200 cycles): DRAM (60),

precharge (20), chip crossings (60, overhead (60).
• Average instruction references are 1 instruction word, 0.3 data word.

Memory delay is mostly communication time. Read/write a bit
is fast. It takes time to select right bit and route the data to/from
bit. This problem gets worse (processor-memory performance gap).
CPUs get faster, memories get bigger.

5.2 Memory hierarchy
Large memories are slow and fast memories are small. � Take
advantage of the principle of locality to present the user with as
much memory as is available in the cheapest technology at the
speed offered by the fastest technology.

• Registers↔ memory: by compiler
• Cache↔ main memory: by cache controller hardware
• Main memory↔ disks: by OS (VM), V-to-P mapping (TLB),

and programmer (files)

	Basics of Logic
	Gates, truth tables, and logic equations
	Boolean algebra
	Gate

	Combinational logic
	A full adder

	State machine
	Elements

	Introduction
	6 great ideas in computer architecture
	Computer architecture
	Performance
	Defining performance
	Amdahl's law

	Multiprocessors

	Instruction set architecture
	MIPS-32 ISA
	Operands
	Number of explicit operands
	Register operands
	Memory operands
	Immediate operands
	The constant zero

	Representing instructions
	R-format instructions
	I-format instructions
	J-format instructions

	Operations
	Logical operations
	Conditional operations
	Basic block

	MIPS (RISC) design principles
	Assembling
	Symbol and relocation tables

	Procedure calls
	Stack basics
	Execution of a procedure
	Procedure instructions
	Spilling registers
	Leaf procedure example
	Non-leaf procedures

	Memory addressing modes
	Memory layout
	Misc.
	Addressing
	Branch addressing
	Jump addressing

	Sort example
	Producing an object module
	Linking produces an executable image
	Load a program: From image file on disk into memory

	RISC (reduced) vs. CISC (complex)

	Processor
	Clocking
	Datapath and control
	Single cycle design
	Instruction critical (longest) path
	How to generate control signals

	Pipelining (ILP)
	5 stages of instruction
	A pipelined MIPS processor
	Formalization
	MIPS ISA designed for pipelining
	MIPS piepline datapath

	Pipeline hazards
	Data forwarding/bypassing
	EX forwarding

	Load-use data hazards
	Implementing stall
	Memory-to-memory copies

	Code scheduling
	Control hazard
	Jumps incur one stall
	Moving branch decision earlier

	Static branch prediction
	Prediction accuracy

	Exceptions
	MIPS to handle exceptions

	Cache
	The memory bottleneck
	Memory hierarchy

