
Machine Learning Spring 2024 � haewonc

1 Deep neural networks
Deep learning learns multiple (hierarchical) layer of data represen-
tation (feature). Neural networks scale with compute, data/model
size (vs. other ML approaches). Artificial neural networks is a
simplified version of biological NN.

• Training dataset {(x1, y1), · · · (xn, yn)}.
• NN f (x;Θ) ∈ R parameterized by Θ.
• Forward propagation ŷ = σ(ΘT

kσ(· · ·σ(ΘT
1 x)))

NNs with ≥ 2 layers i.e. 1 hidden layer can model complex functions.

1.1 Universal approximation theorem
One hidden layer (with enough width) is enough to approximate
all continuous functions.

1.1.1 Arbitrary width case

Let C(X,Rm) denote the set of continuous functions from a subset
X of a Euclidean Rn space to Rm space. Let σ ∈ C(R,R). Note that
(σ◦ x)i = σ(xi), so σ◦ x denotes σ applied to each component of x.
Then σ is polynomial if and only if ∀n ∈ N,m ∈ N, compact K ⊆
Rn, f ∈ C(K,Rm), ϵ > 0 there exist k ∈ N, A ∈ Rk×n, b ∈ Rk,C ∈
Rm×k such that sup

x∈K
|| f (x)−g(x)|| < ϵ where g(x) = C◦(σ⊙(A·x+b)).

(a) We can approximate continuous function with piece-wise linear functions.

(b) Can construct by subtracting 2 step functions.

Proof sketch

1.1.2 Bounded depth and bounded width case

There exists an activation function σ which is analytic, strictly
increasing and sigmoidal and has the following property: For any
f ∈ C[0, 1]d and ϵ > 0 there exists constant di, ci j, θi j, γi and
vectors wi j ∈ Rd for which∣∣∣∣∣ f (x) −

6d+3∑
i=1

diσ
(3d∑

j=1

ci jσ(wi j · x − θi j) − γi

)∣∣∣∣∣ < ϵ
for all x = (x1, · · · , xd) ∈ [0, 1]d.

1.2 Training DNNs
Objective: find a parameter that minimizes error (or empirical risk)

min
Θ

1
n

n∑
i=1

ℓ(f (xi;Θ), yi): = L(Θ) Θ(t+1) = Θ(t) − γ∇L(Θ(t))

where ℓ(·, ·) is a loss function. Gradient descent (GD) updates
parameters iteratively to the gradient direction.

1.2.1 Backpropagation

TL;DR Adjust the last layer weights Θk. Propagate error back to
each previous layers. Repeat for Θk−1, · · · ,Θ1.

Consider the input (xi, yi). Forward propagation to compute ŷi =

f (xi;Θ). i-th layer intermediate output si = Θ
T
i hi−1. Compute

MSE loss ℓ(ŷi, yi) = 1/2 (yi − ŷi)2: = Ei.

∂Ei

∂ŷi
=
∂

∂ŷi

1
2

(yi − ŷi)2 = −(yi − ŷi)

∂Ei

∂sk
=
∂Ei

∂ŷi

∂ŷi

∂sk
=
∂Ei

∂ŷi

∂

∂sk
σ(sk) = (yi − ŷi)σ′(sk)

1.2.2 Activation functions

tanh(x) = 2σ(2x) − 1 and dtanh(x)/dx = 1 − tanh2(x)

1.2.3 Subdifferential

Set of all subgradients of f at x is called the subdifferential of f
at x, written ∂ f (x) if

• ∂ f (x) is a closed set
• ∂ f (x) nonempty (if f convex, and finite near x)
• ∂ f (x) = {∇ f (x)} if f is differentiable at x
• if ∂ f (x) = {g}, then f is differentiable at x and g = ∇ f (x)

The absolute value function (left), and its subdifferential (right)
In many cases, don’t need complete ∂ f (x); sufficient to find one
g ∈ ∂ f (x).

1.2.4 GD in practice
Batch Stochastic

Calculate gradients with All data Subset of data
Computation Heavy Less
Convergence Quick Long
Avoid local optimum Hard Sometimes

• Standardization can be helpful; Increase convergence speed.
e.g. Max-min or z-score normalization
• Mini-batch training + standardization can be a good option.

1.2.5 Optimizers

Momentum accelerates GD when we have surface that curves
more steeply in one direction than in another.

Momentum dampens the oscillation.
Adam calculates individual adaptive learning rate for each parame-
ter from estimates of first and second moments of gradients:

mt = β1mt−1 + (1 − β1)gt, vt = β2vt−1 + (1 − β2)g2
t

m̂t =
mt

1 − βt
1
, v̂t =

vt

1 − βt
2

(Biased corrected estimates)

θt+1 = θt −
ηm̂t
√

v̂t + ϵ
(Parameter update)

Machine Learning Spring 2024 � haewonc

1.2.6 Parameter initialization

W ∼ N(0,Var(W)) where

Var(W) =

√

1/nin (LeCun normal init.)√
2/(nin + nout) (Xavier normal init.)√
2/nout (He normal init.)

1.2.7 Batch normalization

• Allow higher LR and reduce strong
dependence on initialization.
• Activations have different distribu-

tions. BN makes them similar.
• After FC/Conv layer and before

non-linearity layer.

1.3 Convolutional neural networks
• Convolution: Weight sharing and local connectivity
+ Translation invariance
+ Reduce the number of parameters (less overfitting)
+ Learn local features
• Pooling (subsampling): operates on each activation map independently
+ Translation invariance ↑ (to small transformations), Regularization
+ Reduce the number of parameters and computation
• ConvNet is sequence of conv layers followed by non-linearity.

1.4 Recurrent neural networks
Markov chain Pr(wi+1|wi). Language model Pr(wi+1|w1, · · · ,wi)
becomes a large-scale classification task at every time i since its
vocabulary size is large.

RNN models temporal information. Hidden states as a function of
inputs and previous time step information.

Process sequence of vectors by applying recurrence formula at every t

In simple RNN (or vanilla RNN), the state consists of single hidden
vector. Recurrence formula becomes ht = tanh(Θhhht−1 + Θxhxt).
Then compute yt = Θhyht.

1.4.1 Gradient vanishing

RNN with very long sequence suffer from gradient vanishing,
where gradients become zeros during backpropagation. ReLU
is sometimes problematic.

1.4.2 Backpropagation through time (BPTT)

Most common method used to train RNNs.

• The unfolded network (used during forward pass) is treated as
one big FFN that accepts the whole time series as input
• The weight updates are computed for each copy in the unfolded

network, then summed (or averaged) and applied to RNN weights
• In practice, truncated BPTT is used: run the RNN forward k1

time steps, propagate backward for k2 time steps

BPTT and computation graph

1.4.3 Long short-term memory (LSTM)

Add a memory cell that is not subject to matrix multiplication or
squishing (e.g., sigmoid), thereby avoiding gradient decay.

1.4.4 Examples

• Many-to-many: machine translation
• Many-to-one: sentence classification
• One-to-many: image captioning

1.5 Residual network (ResNet)

(a) ResNet (b) This direct path helps maintain the gradient’s
magnitude and prevents it from vanishing.

Machine Learning Spring 2024 � haewonc

2 Ordinary differential equations

2.1 Differential equations
Let h(t) a state vector. dh(t)/dt is a differential equation describ-
ing how h(t) change over time. We are interested in solving the
following initial value problem (IVP) to know the state in future.

h(T) = h(0) +
∫ T

0

dh
dt

dt

IVPs are sometimes analytically solved. Otherwise we rely on a
solver to approximate the solution.

Example of ODE

2.2 ODE solvers

Euler method. Look similar to residual connection

h(t + h) = h(0) + h f (h(t)),
h(t + 2h) = h(t + h) + h f (h(t + h)), · · ·

Runge-Kutta (RK) method
Dormand–Prince (DOPRI) method. After comparing the RK4
and RK5 results, use a large step-size h if the difference is small,
and small h if the difference is large. In other words, the (adaptive)
size-size is inversely proportional to the estimated difference.

2.3 Neural ODE
Parameterize the hidden units using
ODE specified by neural network:

dh(t)
dt
= f (h(t), t, θ)

Starting from the input layer h(0),
we can define the output layer h(T)
to be the solution to this ODE ini-
tial value problem at some time T .
This can be computed by black-box
differential equation solver.

Left: ResNet defines a discrete
sequence of finite transforma-
tions. Right: A ODE network
defines a vector field, which
continuously transforms state.
Circles: evaluation locations.

Defining/evaluating models using ODE solvers has several benefits:

• Memory efficiency: not store intermediate quantities of forward
→ O(1) memory learning
• Modern ODE solvers provide error estimate and evaluation

(step size) adaptive to given resource

2.3.1 NODE-based image classifier

• A typical construction: feature extraction→ NODE→ output
• NODE layer is analogous to (continuous) residual layers
• Can use standard backpropagation algorithm to train.

2.3.2 Adjoint sensitivity method

Differentiating through the operations of forward pass is straight-
forward, but incurs a high memory cost and introduces numerical
error. For example, depth of DOPRI frequently becomes large.

We treat the ODE solver as a black box, and compute gradients
using the adjoint sensitivity method. Consider optimizing L(),
whose input is the result of an ODE solver.

L(z(t1)) = L
(
z(t0)+

∫ t1

t0
f (z(t), t, θ)dt

)
= L(ODESolve(z(t0), t0,T, θ))

We first determine the adjoint a(t) = ∂L/∂z(t). Its dynamics are
given by another ODE, which can be thought of as the instantaneous
analog of the chain rule:

da(t)
dt
= −a(t)T ∂ f (z(t), t, θ)

∂z

We can compute ∂L/∂z(t0) by another call to an ODE solver. This
solver must run backwards, starting from initial value of ∂L/∂z(t1).
This will require knowing value of z(t) along its entire trajectory,
but we can simply recompute z(t) backwards in time together with
the adjoint, starting from its final value z(t1). We can calculate the
gradients with a reverse-mode integral,

dL
dθ
= −

∫ t0

t1
a(t)T ∂ f (z(t), t, θ)

∂θ
dt

No need to maintain computation graph of NODEs→ O(1) space.

2.3.3 Analogy to ResNet

Machine Learning Spring 2024 � haewonc

3 Transformers

3.1 Background
Context vector c is often just hT . Input sequence is bottlenecked
through fixed-sized vector. What if sequence is very long?

3.1.1 Image captioning with CNN and RNN

• Transfer learning: take last layer of CNN trained to ImageNet
• Final representation v of CNN is provided to RNN. Now h =

tanh(Wxhx +Whhh +Wihv)
• Sample word and copy to input. Stop after sampling <END> token

3.2 Watson-Nadaraya estimator
Data {x1, · · · , xm} and ground-truths {y1, · · · , ym}. Estimate y at
a new location x. Naive way is just average. Watson-Nadaraya
estimator weigh the ground truths: y =

∑
i a(x, xi)yi where x is

query, xi is key, and yi is value.

• Consistency: given enough data, converges to optimal solution
• Simplicity: no free parameters: information is in data not weights
• Deep learning variant: learn the weighting function

3.2.1 Seq2Seq with RNN and attention

RNN need attention for parallelization and deal with long-range
dependencies. Here, decoder doesn’t use the fact that hi form an
ordered sequence–it just treats them as an unordered set {hi}.

3.3 Attention
• Basic attention layer. Given query q ∈ Rd, input X ∈ Rn×d.

Similarities ei = fatt(q, xi), e ∈ Rn. Attention weights a =
softmax(e) ∈ Rn. Output vector y =

∑
aixi ∈ R

d.
• Commonly separate key and value: K = Wk X,V = WvX.

Similarities E = fatt(K,Q) ∈ Rn×n, attention weights A =
softmax(E) ∈ Rn×n. Output vector y j =

∑
ai jvi, y ∈ Rd

• Similarity functions fatt: qT xi (dot product), qT xi/
√

d (scaled
dot product), f (Q, X) = QT X (multiple queries product).
• Self-attention layer has one query per input. Q = X ∈ Rn×d.

Uses scaled dot product. Permutation equivariant i.e. f (s(x)) =
s(f (x)) and works on sets of vectors.

3.3.1 Advantages of attention

• Allows decoder to focus on certain parts of source → Signifi-
cantly improved NMT and time series performance
• Shortcut between faraway states→Mitigates vanishing gradient
• Provides some interpretability

Weighted sum is a selective summary of the information contained
in values. Way to obtain a fixed-size representation of an arbitrary
set of representations (values) dependent on other (query).

Scaled dot-product attention attends to one or few entries in the
input key-value pairs. (↔ human) Multi-head SA split inputs, use
H independent heads in parallel, and concatenate ouptuts.

3.3.2 Positional encoding
Unlike RNN, attention encoder outputs do not
depend on the order of inputs, which is impor-
tant. Concatenate positional information of in-
put token to input embedding.

PEpos,2i = sin(pos/100002i/d),

PEpos,2i+1 = cos(pos/100002i/d)

3.4 Transformers
SA is the only interaction between vectors. Lay-
erNorm and MLP work independently per vector.
→ Highly scalable and parallelizable. Transformer block

4 Generative models
A generative task aim to learn p(x) and generate fake samples from
learned distribution pθ(x).

• Quality vs. diversity dilemma:
– Likelihood-based GMs directly learns the pdf of training data

e.g. normalizing flows, VAE.
– Implicit GMs do not directly maximize the likelihood of train-

ing data but implicitly and internally learn it.
• Score-based models (SGMs) propose a novel paradigm i.e., learn-

ing the gradient of the log pdf, a quantity often known as the
(Stein) score function.

4.1 Flow-based models
4.1.1 Mathematical background

Consider a 2-d coordinate (x, y) and invertible transformation T .
(u, v) = T (x, y) and (x, y) = T−1(u, v). Jacobian matrix J is all
first-order partial derivatives of this transformation

J =

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

Change of Variable theorem (CVT) states∫ ∫

S
f (x, y)·dxdy =

∫ ∫
T (S)

f (T−1(u, v))·
∣∣∣∣∣∂x∂u ∂y∂v − ∂x∂v ∂y∂u

∣∣∣∣∣︸ ︷︷ ︸
abs. det. of Jacobian

dudv

CVT for probability density estimation

log p(u, v) = log p(x, y) + log
∣∣∣∣∣ det

∂T
∂(x, y)

∣∣∣∣∣

Interpretation of dxdy = | det ∂T/∂(x, y)| dudv. f sends a small square to
a distorted parallelogram. The Jacobian at a point gives the best linear
approximation of the distorted parallelogram near that point, and the det J
gives the ratio of the area of the approximating parallelogram to that of
the original square.

4.1.2 Density estimation in NODEs

Suppose we design a generator using NODEs. z(0) typically fol-
lows a unit Gaussian. So we know log p(z(0)). We can estimate
p(z(1)) as log p(z(1)) = log p(z(0)) + log |det of Jacobian atz(0)|,
then p(z(2)), and so on. Suppose z(2) is specific image. We know
the probability that this specific image generated by the generator.

Machine Learning Spring 2024 � haewonc

4.2 Generative adversarial networks (GAN)
Zero-sum minimax game between two players

min
G

max
D

V(G,D) = E[log D(x)]x∼pdata(x) + E[log(1 − D(G(x)))]z∼p(z)

To maximize, D(x) = 1 and D(G(z)) = 0. To minimize, D(G(z)) = 1.

4.2.1 Equilibrium state proof of GANs

First consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(1)

Proof. The training criterion for the discriminator D, given any
generator G, is to maximize the quantity V(G,D)

V(G,D) =
∫

x
pdata(x) log(D(x))dx +

∫
z

pz(z) log(1 − D(g(z)))dz

=

∫
x

pdata(x) log(D(x)) + pg(x) log(1 − D(x))dx (2)

For any (a, b) ∈ R2 \ {0, 0}, the function y→ a log(y) + b log(1 − y)
achieves its maximum in [0, 1] at a/(a+ b). The discriminator does
not need to be defined outside of Supp(pdata) ∪ Supp(pg). □

Note that the training objective for D can be interpreted as maxi-
mizing the log-likelihood for estimating the conditional probability
P(Y = y|x), where Y indicates whether x comes from pdata (with
y = 1) or from pg (with y = 0). The minimax game is now:

C(G) =max
D

V(G,D)

=Ex∼pdata [log D∗G(x)] + Ez∼pz [log(1 − D∗G(G(z)))] (3)
=Ex∼pdata [log D∗G(x)] + Ex∼pg [log(1 − D∗G(x))]

=Ex∼pdata

[
log

pdata(x)
Pdata(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)
pdata(x) + pg(x)

]
Theorem 1. The global minimum of the virtual training criterion
C(G) is achieved if and only if pg = pdata. At that point, C(G)
achieves the value − log 4.

Proof. For pg = pdata, D∗G(x) = 1/2, (consider Eq. 1). Hence,
by inspecting Eq. 3 at D∗G(x) = 1/2, we find C(G) = log(1/2) +
log(1/2) = − log 4. To see that this is the best possible value of
C(G), reached only for pg = pdata, observe that

Ex∼pdata

[
− log 2

]
+ Ex∼pg

[
− log 2

]
= − log 4

and that by subtracting this expression from C(G) = V(D∗G,G), we
obtain:

C(G) = − log(4) + KL
(
pdata

∥∥∥∥∥ pdata + pg

2

)
+ KL

(
pg

∥∥∥∥∥ pdata + pg

2

)
(4)

where KL is the Kullback–Leibler divergence. We recognize in the
previous expression the Jensen–Shannon divergence between the
model’s distribution and the data generating process:

C(G) = − log(4) + 2 · JS D
(
pdata
∥∥∥pg

)
(5)

Since the Jensen–Shannon divergence between two distributions is
always non-negative and zero only when they are equal, we have
shown that C∗ = − log(4) is the global minimum of C(G) and that
the only solution is pg = pdata, i.e., the generative model perfectly
replicating the data generating process. □

4.2.2 Why Gaussian prior?

Gaussian distributions have the following favorable characteristics:

• The mean of many independent random variables will converge
to a Gaussian distribution (cf. the central limit theorem)
• Encodes the least amount of prior knowledge i.e., the max en-

tropy) into a model

4.3 Score-based generative models
The pdf is defined as pθ(x) = e− fθ(x)/Zθ. For training, we maximize
the log-likelihood max

θ

∑
log pθ(x)i) which is undesirable. We can

bypass the intractable Zθ by only considering the score function,
which is the gradient of the log-density w.r.t. the random variable.

sθ(x) = ∇x log pθ(x) = −∇x fθ(x) − ∇x log Zθ︸ ︷︷ ︸
0

= −∇x fθ(x)

Score function provides numerical benefits: range [−∞,∞] and no
need to normalize.

4.3.1 Score matching

Given the ground-truth score function, we can minimize the follow-
ing Fisher divergence.

Ep(x)[||∇x log p(x) − sθ(x)||22]

After training, rely on Langevin dynamics to generate samples.

xi+1 ← xi + ϵ∇x log p(x) +
√

2ϵ zi zi ∼ N (0, I)

Pitfalls of score matching: Hard to learn correct score function
for low-density regions since the L2 distance is weighted by p(x).

4.4 Noise conditional score-based models (NCSMs)
TL;DR: Diffuse data with Brownian motion i.e. perturb with
Gaussian noise, and reverse this process.

NCSM minimize the following training objective where i is pertur-
bation index:

L∑
i=1

λ(i)Epσi (x)[||∇x log pσi (x) − sθ(x, i)||22]

log pσi =

∫
p(y)︸︷︷︸

GT; hidden

N (x; y, σ2
i I)dy︸ ︷︷ ︸

Gaussian around y; transition probability

This is equivalent as learning score function for each σi. NCSM
mathematically decompose original loss to constant plus loss of
only transition probability, named denoising score matching loss.

4.5 Score-based generative models
SGMs continuously generalized diffusion models using SDEs.

dx = f (x, t)dt︸ ︷︷ ︸
drift

+ g(t)dw︸ ︷︷ ︸
diffusion; dw is Gaussian noise

Machine Learning Spring 2024 � haewonc

The authors propose 3 types of drift/diffusion: one of them is
DDPM, one of them is NCSM.

At t = T , original distribution forgotten, noise term dominates; it is
single Gaussian. If we know the score function at time t of forward
process, we can stochastically reverse that forward process.

1. Train score network. GT score function replaced to sθ(x, t).
• Also rely on denoising score matching loss

2. Stochastically reverse single Gaussian to target distribution us-
ing Euler-Maruyama method

 Stochastically reverse→ high diversity
 High quality (↔ GAN). This minimizes the upper bound of KL.

JSD is more stable than KL, but global optimum of GAN is
impossible to achieve in practice.

 Query score function T times→ high complexity

May use probability flow ODE for sampling, which deterministi-
cally reverse. Both have the same marginal probability pt(x)∀t.

4.6 Poisson flow generative models
4.6.1 GNN basics

Degree matrix has number of neighbors at diagonal. Laplacian
is degree matrix - adjacency matrix. Consider a graph G with
Laplacian L and a graph signal (feature) x ∈ RN×D on G. Signal
y = Lx i.e. yi =

∑
j∈Ni

(xi − x j). yi measures difference between x
at a node and its neighborhood, i.e. difference operator.

4.6.2 Heat diffusion over graph

Via heat equation xt = −Lx, we say the signal diffuses through
graph. Lx is positive if my temperature > neighbor→ this equation
means ‘cooling down’. Temperature at each location is averaged
with its neighbors. Converges to average temperature.

The Euler method for temperature update is x(t+h) = x(t)−hLx(t).
h can be interpreted as learning rate in DL but step size of Euler
method in physics.

4.6.3 Graph convolutional network (GCN)

Let x(t) the hidden vector for each node at layer t. Consider a
row-wise normalized Laplacian L̃. Euler discretized heat equation
was x(t + 1) = x(t) − L̃x(t) = (1 − L̃)x(t)

GCN uses diffusion process x(t+1) = σ((1− L̃)x(t)W). A trainable
parameter (or diffusivity/conductivity) W ∈ RN×N represents how
close two nodes are. This is just W multiplied to Euler discretized
heat equation. The inductive bias of GCN is heat diffusion equation
and is influenced by physics (physics bias). At the same time, one
can consider that this is a first-order graph filtering approach. Ã is
normalized adjacency matrix.

4.6.4 Oversmoothing problem

One major problem is oversmoothing problem: all nodes’ last
hidden vectors become similar to each other when the number
of GCN layers is large. → mean avg distance (MAD) decreases
and node classification accuracy decreases as layer go deeper than
some threshold.

Self attention is also GCN, since 1 − L̃ = Ã. So transformers also
subject to oversmoothing problem. But in case of transformers Ã
is learned not given.

4.6.5 Poisson flow models

Idea: at the beginning of sampling, move straight.

• Diffusion model is inspired from thermodynamics: any local-
ized distribution of a gas will eventually spread out to fill an
entire space evenly simply through random motion.
• Poisson flow generative models are inspired from electrostat-

ics: any distribution of electrons in a hyperplane generates a
uniform hemisphere.

A charge distribution (purple) and the electric field lines (black) it
generates. If we let the charge distribution evolve along the field lines, it
will transform into a uniform hemispherical distribution. z-axis
corresponds to time of diffusion model.

4.6.6 Training Poisson flow models
1. Augment data with z = 0
2. Calculate the empirical field in

random x, y, z–O(N) where N is
number of training samples

3. Calculate loss and update func-
tion approximator of empirical
field, dx = −E(x)dt

4.6.7 Sampling Poisson flow models

1. Uniformly sample data on a large hemisphere
2. Use an ODE solver to evolve the points backwards along the

Poisson field
3. Evolve backwards until we reach z = 0, at which point we have

generated novel data from the training distribution.

	Deep neural networks
	Universal approximation theorem
	Arbitrary width case
	Bounded depth and bounded width case

	Training DNNs
	Backpropagation
	Activation functions
	Subdifferential
	GD in practice
	Optimizers
	Parameter initialization
	Batch normalization

	Convolutional neural networks
	Recurrent neural networks
	Gradient vanishing
	Backpropagation through time (BPTT)
	Long short-term memory (LSTM)
	Examples

	Residual network (ResNet)

	Ordinary differential equations
	Differential equations
	ODE solvers
	Neural ODE
	NODE-based image classifier
	Adjoint sensitivity method
	Analogy to ResNet

	Transformers
	Background
	Image captioning with CNN and RNN

	Watson-Nadaraya estimator
	Seq2Seq with RNN and attention

	Attention
	Advantages of attention
	Positional encoding

	Transformers

	Generative models
	Flow-based models
	Mathematical background
	Density estimation in NODEs

	Generative adversarial networks (GAN)
	Equilibrium state proof of GANs
	Why Gaussian prior?

	Score-based generative models
	Score matching

	Noise conditional score-based models (NCSMs)
	Score-based generative models
	Poisson flow generative models
	GNN basics
	Heat diffusion over graph
	Graph convolutional network (GCN)
	Oversmoothing problem
	Poisson flow models
	Training Poisson flow models
	Sampling Poisson flow models

