
Machine Learning Spring 2024 � haewonc

1 Maximum likelihood estimation

1.1 Gaussian distribution
The univariate Gaussian is as follows.

N (x|µ, σ2) =
1

(2πσ2)1/2 exp
{
−

1
2σ2 (x − µ)2

}
The multivariate Gaussian is as follows.

N (x|µ,Σ2) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−

1
2

(x − µ)TΣ−1(x − µ)︸                  ︷︷                  ︸
Mahalanobis distance from µ to x

}

D represents the dimensionality of the data, which means x,µ are
D-dimension vectors and Σ is D × D matrix. The covariance Σ
determines the overall shape.

1.1.1 Maximum likelihood for Gaussian

 MLE is finding the µ,Σ that best fits the given dataset.

 Likelihood is probability of observing the given data under a
specific distribution. Likelihood of a dataset is a product of the
individual probabilities.

A log-likelihood of data set X = (x1, · · · , xN)T under multivariate
Gaussian is as follows.

ln p(X|µ,Σ) = −
ND
2

ln(2π)−
ND
2

ln |Σ|−
1
2

N∑
n=1

(xn−µ)TΣ−1(xn−µ)

The sufficient statistics of the log-likelihood are as follows.

N∑
i=1

xn

N∑
i=1

xnxT
n

The derivative of the log-likelihood is as follows.

∂

∂µ
ln p(X|µ,Σ) =

N∑
n=1

Σ−1(xn − µ)

By setting it to zero, we can find the MLE of µ.

µML =
1
N

N∑
n=1

xn ΣML =
1
N

N∑
n=1

(xn − µML)(xn − µML)T

1.1.2 Sequential estimation

In online learning setting, the following sequential estimation is
important.

µ(N)
ML =

1
N

N∑
n=1

xn

=
1
N

xN +
1
N

N−1∑
n=1

xn

=
1
N

xN +
N − 1

N
µ(N−1)

ML

= µ(N−1)
ML +

1
N

( xN − µ
(N−1)
ML︸        ︷︷        ︸

deviation of new data

)

The correctness of the sequential estimation can be proved. First,
consider the general method called Robbins-Monro algorithm.

θ(N) = θ(N−1) + αN−1
∂

∂θ(N−1) ln p(xN |θ
(N−1))

Its convergence conditions are as follows.

lim
N→∞

aN = 0
∞∑

N=1

aN = ∞

∞∑
N=1

a2
N < ∞

For a univariate Gaussian, we can rewrite previous sequential esti-
mation in the form of Robbins-Monro algorithm.

∂

∂µML
ln p(x|µ)ML, σ2) =

1
σ2 (x − µML) aN = σ

2/N

1.1.3 The mixture of Gaussians

A superposition of K Gaussians are defined as follows.

p(x) =
K∑

k=1

πKN (x|µk,Σk), Mixing coefficients
K∑

k=1

πk = 1

Its maximum likelihood is defined as follows.

ln p(X|π,µ,Σ) =
N∑

n=1

ln
{ K∑

k=1

πKN (x|µk,Σk)
}

1.2 Maximum a posterior (MAP) estimation
1.2.1 Coin flipping games

Let X = 1 if head. If random, p(X = 1), p(X = 0) should always
= 0.5. You suspect someone is using fraud coin. After observing
N heads and M tails, what is p(X = 1) of the coin?

We only have one parameter θ = p(X = 1) to learn since p(X =
0) = 1 − θ. Flips are independent so p(N,M|θ) = θN(1 − θ)M is the
likelihood we need to maximize.

θML = argmax
θ

ln p(N,M|θ) = argmax
θ

ln θN(1 − θ)M

This maximization is a concave problem whose maximum can be
calculated by setting its derivative to zero.

d ln θN(1 − θ)M

dθ
=

N
θ
−

M
1 − θ

= 0

∴ θML =
N

N + M

Let us find the MAP of θ. First, we need to choose a prior distribu-
tion. The following beta distribution is typically used.

p(θ) ∼ Beta(N,M) =
θN−1(1 − θ)M−1

B(N,M)

The posterior distribution is proportional to the product of the
likelihood and the prior.

p(θ|N,M) ∝ p(N,M|θ) · p(θ)

∴ p(θ|N,M) ∝ θN(1 − θ)M ·
θN−1(1 − θ)M−1

B(N,M)

The following is a concave maximization again.

θMAP = argmax
θ

ln p(θ|N,M)

Solving in the same way,

θMAP =
N + N − 1

N + N − 1 + M + M − 1
.



Machine Learning Spring 2024 � haewonc

 Comparing inference methods

• Prior knowledge: Your father said that felines are small.
• Training sample: You visited India and saw a large tiger.
• Given the above prior and training sample,

– Prior: still believe that felines are small.
– MLE: believe that felines are large.
∵ We learn from observations only.
– MAP: believe that some felines are small whereas others are large.
∵ We revise the prior knowledge with observations.

1.3 Nonparametric methods
In parametric methods, we assume a distribution and learn its
parameters from data. Nonparametric methods do not assume any
such underlying distribution (or model).

1.3.1 Kernel density estimation (KDE)

 By averaging kernel functions centered on each observed data,
we can derive PDF.

 Kernel function k is
∫

k(u)du = 1 and non-negative.

Suppose observations drawn from an unknown density p(x). The
probability mass of a region R is as follows.

P =
∫
R

p(x)dx

The probability of K out of N observations fall into R is as follows.

Bin(K|N, P) =
N!

K!(N − K)!
PK(1 − P)N−K K ≃ NP

If R, whose volume is V , is sufficiently small,

P ≃ p(x)V p(x) =
K

NV

When R is a hypercube with side h centered on x, the total number
K of points in the cube is as follows.

K =
N∑

n=1

k
( x − xn

h

)
where k(u) =

1, |ui| ⩽ 1/2, (i = 1, · · · ,D)
0, otherwise

Since V = hD,

p(x) =
1
N

N∑
n=1

1
hD k
( x − xn

h

)
We can use a kernel smoother to deal with artificial discontinuities.
Following shows Gaussian kernel where h is stdev. It is placing a
Gaussian for each x instead of a hypercube.

p(x) =
1
N

N∑
n=1

1
(2πh2)1/2 exp

{
−
||x − xn||

2

2h2

}

KDE does not require training but require saving all training points
and a linear complexity computation for each x to estimate.

1.3.2 Nearest neighbor method

In the kernel density estimation, h is fixed. In the nearest-neighbor
method, h is locally decided until a sphere contains K data points,
where h is the radius of the sphere.

We can extend this method to classification. In each class Ck there
are Nk points.

∑
k

Nk = N points. For a test sample x, we draw a

circle containing K points. Let V be the volume of this circle and
Kk the number of points of class Ck. Then,

p(Ck) =
Nk

N
p(x) =

K
NV

p(x|Ck) =
Kk

NkV

Using Bayes’ theorem,

p(Ck |x) =
p(x|Ck)p(Ck)

p(x)
=

Kk

K

2 Information theory
Information quantity is inversely proportional to probability. We
define self-information of an event x

I(x) = − log P(x)

The entropy of a random variable x is

H[x] = Ex∼P[I(x)] = −Ex∼P[log P(x)]

Entropy means the minimum number of bits to encode the infor-
mation drawn from P, i.e. the best coding scheme to deliver the
information of P.

 Huffman encoding

Each encoding unit is associated with a frequency. Create a binary
tree whose children are the units with the smallest frequencies. The
frequency of the root is the sum of leaves. Repeat.

H(P) is the entropy of a distribution P. H(P,Q) is the cross-entropy
between P and Q. Gibb’s inequality states always H(P) ≤ H(P,Q).

H(P,Q) = −Ex∼P[log Q(x)]

Kullback-Leibler (KL) divergence measure the difference between P,Q.

DKL(P||Q) = Ex∼P[log
P(x)
Q(x)

] = Ex∼P[log P(x) − Q(x)]

DKL(P||Q) is always non-negative.

DKL(P||Q) = Ex∼P[log P(x) − Q(x)]

=

∫
P(x)(log P(x) − log Q(x))dx

=

∫
P(x) log P(x)dx −

∫
P(x) log Q(x)dx

= −H(P) + H(P,Q)



Machine Learning Spring 2024 � haewonc

3 Linear models

3.1 Linear models for regression
The goal of regression is to predict the value of one or more target
variables t given the value of a D-dimensional vector x of input
variables. The simplest form of linear models are linear functions
of the input variables, called linear regression.

y(x,w) = w0 + w1x1 + · · ·wDxD

We can obtain a much useful functions by taking linear combina-
tions of a fixed set of nonlinear functions of the input variables,
known as basis functions. Such models are linear functions of the
parameters w, which gives them simple analytical properties, and
yet can be nonlinear w.r.t the input variables.

y(x,w) = w0 +

M−1∑
j=1

w jϕ j(x)

= wTϕ (with ϕ0(x) = 1)

The bias parameter w0 allows for any fixed offset in the data.

 Basis functions. Gaussian ϕ j(x) = exp{−(x − µ j)2/2s2}. Sig-
moidal ϕ j(x) = σ((x − µ j)/s), σ(a) = 1/(1 + exp(−a)). The linear
regression is the special case with identity basis ϕ(x) = x.

3.1.1 Maximum likelihood and least square

We aim to fit the model to dataset using squared error function. It is
equivalent as finding the maximum likelihood under the assumption
that the prediction error is the result of Gaussian noise, i.e. t =
y(x,w) + ϵ where ϵ ∼ N (0, β−1). Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1)

Now consider a dataset of N inputs {xn} and their target values
t = {tn}. The log-likelihood of the linear model is as follows. We
drop x from condition for brevity.

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTϕ(xn), β−1)

=
N
2

ln β −
N
2

ln(2π) − βED(w)

where ED(w) =
1
2

N∑
n=1

{tn − wTϕ(xn)}2

MLE w.r.t w is as follows.

0 = ∇ ln p(t|w, β) =
N∑

n=1

{tn − wTϕ(xn)}ϕ(xn)T

=

N∑
n=1

tnϕ(xn)T − wT
( N∑

n=1

ϕ(xn)ϕ(xn)T
)

wML = (ΦTΦ)−1ΦTt where Φ =


ϕ0(x1) · · · ϕM−1(x1)
...

. . .
...

ϕ0(xN) · · · ϕM−1(xN)


We define Moore-Penrose pseudo-inverse as follows.

Φ† ≡ (ΦTΦ)−1ΦT

MLE w.r.t β is as follows.

0 =
d

dβ
ln p(t|w, β) =

N
2β
− ED(w)

βML =
N

2ED(wML)
, or

1
βML

=
1
N

N∑
n=1

{tn − wT
MLϕ(xn)}2

Prediction. Our goal is predicting the target t given new x. Since
we assumed a squared error, the optimal prediction is the condi-
tional mean of p which is simply y(x,w).

? What happens if ΦTΦ is close to singular? → Numerical insta-
bility and high sensitivity to noise.

3.1.2 Analytical solution of linear regression

L = (xθ − y)T (xθ − y), where x ∈ Rn×d, y ∈ Rn, θ ∈ Rd×1

Minimize this mean squared error loss function, argmin
θ

L.

L = ((xθ)T − yT )(xθ − y)

= (xθ)T xθ − (xθ)T y − yT (xθ)︸              ︷︷              ︸
these are scalars

+yT y

= θT xT xθ − 2yT (xθ) + yT y

 Note that below holds.

∂(Ax)
∂x

= AT ,
∂(xT A)
∂x

= A,
xT x
∂x
= 2x,

∂(xT Ax)
∂x

= Ax + AT x

Using above,

∂L
∂θ
= xT xθ + xxTθ = 2xT xθ − 2xT y = 0

∴ θ∗ = (xT x)−1xT y

n should be larger than d for this analytical solution to be derived.

3.1.3 Geometrical interpretation

Consider an N-dimensional space and a vector t= (t1, · · · , tn)T

in this space. Each basis function ϕ j(xn), evaluated at the N data
points, can also be represented as a vector in the same space, de-
noted by φ j. If M < N, M vectors φ j will span a linear subspace
S of dimensionality M. We define y to be a N-dimensional vector
whose nth element is given by y(xn,w). Since y is an arbitrary linear
combination of vectors φ j, it is in S. The sum of squared error is
equal to squared Euclidean distance between y and t. Thus the
least-squares solution for w corresponds to the orthogonal projec-
tion of t onto the subspace S.

3.1.4 Sequential learning

Batch processing can be infeasible for large datasets. We use the
following stochastic gradient descent, also known as sequential
gradient descent, with the error function E.

w(τ+1) = w(τ) − η∇En

In the case of the sum of squared error,

w(τ+1) = w(τ) + η(tn − w(τ)Tϕn)ϕn ϕn = ϕ(xn)



Machine Learning Spring 2024 � haewonc

3.1.5 Regularized least square

We can add regularization term to alleviate over-fitting.

ED(w) + λEW (w)

Weight decay or L2 regularization EW (w) = 1/2 wT w encourages
weight values to decay towards zero, unless supported by the data.
It has the advantage that the error function remains a quadratic
function of w, and so its exact solution can be found in closed form.

Total error function
1
2

N∑
n=1

{tn − wTϕ(xn)}2 +
1
2

wT w

Solution w = (λI + ΦTΦ)−1ΦTt

A more general regularizer
1
2

M∑
j=1

|w j|
q is sometimes used. Quadratic

regularizer q = 2 corresponds to weight decay. q = 1 is called
lasso and has the property that if λ is sufficiently large, some of the
coefficients w j are driven to zero, leading to a sparse model.

Contours of the regularization term by q

3.1.6 Effect of regularization

The blue contours represent levels of the unregularized error func-
tion. Each contour line represents points in the parameter space
that yield the same error value. The dot in the center of circles
represents the minimum error, or the optimal parameters without
regularization. The yellow regions represent constraint region for
the quadratic regularizer q = 2 (left) and lasso q = 1 (right).

Black dots w∗ represent the optimal parameters with regularization.
These are the points where the first contour touches the edge of the
constraint region, indicating the lowest error within the regulariza-
tion constraint. Lasso gives a sparse solution in which w∗1 = 0.

3.2 The bias-variance decomposition
The expected squared loss can be written by

E[L] =
∫ ∫

{y(x) − t}2 p(x, t)dxdt.

Our goal is to choose y(x) so as to minimize E[L]. Using the
calculus of variations,

δE[L]
y(x)

= 2
∫
{y(x − t}p(x, t)dt = 0.

Solving for y(x), we show that the optimal solution is the condi-
tional expectation

y(x) =

∫
tp(x, t)dt

p(x)
=

∫
tp(t|x)dt = Et[t|x]

Using above, we expand the square term as follows.

{y(x) − t}2 = {y(x) − E[t|x] − t}2

= {y(x) − E[t|x]}2 + 2{y(x) − E[t|x]}{E[t|x] − t} + {E[t|x] − t}2

Performing the integral over t, we have following.

E[L] =
∫
{y(x) − E[t|x]}2 p(x)dx +

∫
{E[t|x] − t}2 p(x)dx

The second term, which is independent of y(x) arises from the
intrinsic noise on the data and represents the minimum achievable
value of the expected loss.

We can interpret the uncertainty by considering multiple datasets.
For any D, we can obtain a prediction function y(x;D). Denoting
the conditional expectation

h(x) = E[t|x] =
∫

tp(t|x)dt,

the first term {y(x;D) − h(x)} will be dependent on the particular
dataset D. If we add and subtract ED[y(x;D)] inside the braces,
we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2 + cross term

If we take expectation, the cross term vanish, giving

ED[{y(x;D) − h(x)}]

= {ED[y(x;D)] − h(x)}2︸                      ︷︷                      ︸
bias2

+ED[{y(x;D) − ED[y(x;D)]}2]︸                                 ︷︷                                 ︸
variance

We can quantize bias and variance given multiple datasets D(l) and
the model y(l) trained with D(l). The average prediction ȳ can be
estimated, resulting in the following decomposition.

ȳ =
1
L

L∑
l=1

y(l)(x)

bias2 =
1
N

N∑
i=1

{ȳ(xn) − h(xn)}2

variance =
1
N

N∑
i=1

1
L

L∑
i=1

{y(l)(xn) − ȳ(xn)}2

There is a trade-off between bias and variance, with very flexible
models having low bias and high variance, and relatively rigid
models having high bias and low variance.



Machine Learning Spring 2024 � haewonc

Illustration of the dependence of bias and variance on model
complexity, governed by a regularization parameter λ. There are 100
data sets, each having 25 dat apoints, and there are 24 Gaussian basis
functions in the model so that the total number of parameters is M = 25
including the bias parameter. The left shows the result of fitting the model
to the data sets for various values of ln λ. The right column shows the
corresponding average of the 100 fits (red) along with the sinusoidal
function from which the data sets were generated (green).

3.3 Bayesian linear regression
The choice of the number and form of the basis functions is still im-
portant in MLE. Appropriate model complexity cannot be decided
simply by maximizing the likelihood function, because this always
leads to excessively complex models and over-fitting. Independent
hold-out data can be used to determine model complexity, but this
can be both computationally expensive and waste of data. We
therefore turn to a Bayesian linear regression, which will avoid the
over-fitting problem of MLE, and lead to automatic methods of
determining model complexity using the training data alone. As
in Sec. 3.1.1, we will focus on the case of a single target variable
t = y(x,w) + ϵ where ϵ ∼ N (0, β−1).

p(t|x,w, β) = N (t|y(x,w), β−1)

ln p(t|w, β) =
N
2

ln β −
N
2

ln(2π) − βED(w)

ED(w) =
1
2

N∑
n=1

{tn − wTϕ(xn)}2

Let a prior of w as zero-mean isotropic Gaussian governed by a
single precision parameter α so that

p(w|α) = N (w|0, α−1I) =
(
α

2π

)(M+1)/2
exp
{
−
α

2
wT w
}

Then posterior distribution of w

p(w|x,t, α, β) ∝ p(t|x,w, β)p(w|α)

Its solution is to minimize the following. Note that solving this is
as easy as the likelihood case due to the conjugate prior.

β

2

N∑
n=1

{y(xn,w) − tn}2 +
α

2
wT w

3.3.1 Sequential learning of MAP

We illustrate Bayesian learning in sequential update of a posterior
distribution. We generate synthetic data from function f (x) =
−0.3+ 0.5x by choosing xn ∼ U(x| − 1, 1) then evaluating f (x) and
adding Gaussian noise with standard deviation of 0.2 to obtain tn.
Our goal is to recover parameters of f (x). We assume here that
noise variance is known and hence set precision parameter to its
true value β = (1/0.2)2 = 25. Similarly, we fix α = 2.0.

The figure above demonstrates the sequential nature of Bayesian
learning in which the current posterior distribution forms the
prior when a new data is observed. Third column shows the
function f (x,w) where w are drawn from the prior.

Row 1 Before any data points are observed.
Row 2 After observing a single data (blue circle). First plot shows

likelihood p(t|x,w) for this data as a function of w. This
provides a soft constraint that the line must pass close to
the data, where close is determined by the noise precision β.
True parameter values are shown by a white cross. Multiply
this likelihood by prior from previous row, and normalize,
obtaining posterior distribution (second plot).

Row 3 After observing a second data. Exactly same posterior dis-
tribution as combining the original prior with the likelihood
function for 2 data. Since two are sufficient to define a line
this already gives a relatively compact posterior distribution.

Row 4 After observing 20 data. First plot shows the likelihood func-
tion for the 20th data alone. Posterior is much sharper than in
the third row. If number of data→∞, posterior distribution
would be delta function centred on true parameter.



Machine Learning Spring 2024 � haewonc

We are interested in making predictions of t for new values of x.
This requires that we evaluate the posterior predictive distribution
(PPD) defined by

p(t|x, x,t) =
∫

p(t|x,w)p(w|x,t)dw

in which x, t are the vector of input and target values from the
training set. Since we used the conjugate prior:

p(t|x, x,t) = N (t|m(x), s2(x))

m(x) = βϕ(x)T S
N∑

n=1

ϕ(xn)tn

s2(x) = β−1 + ϕ(x)T Sϕ(x)

S−1 = αI + β
N∑

n=1

ϕ(xn)ϕ(x)T

The first term of s2(x), β−1 represents the noise on the data whereas
the second term reflects the uncertainty associated with the param-
eters w. Because the noise process and the distribution of w are
independent Gaussians, their variances are additive.

Fit a model consisting of 9 Gaussian basis functions to sinusoidal
wave (green) by the size of dataset (N = 1, 2, 4, 25). For each plot, the
red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans standard deviation.

Note that the predictive uncertainty depends on x and is smallest in
the neighbourhood of the data points. As additional data points are
observed, the posterior distribution becomes narrower. It can be
shown s2

N+1(x) ≤ s2
N(x). In the limit N → ∞, the second term→ 0,

and the variance of the predictive distribution arises solely from β.

We draw samples from the posterior distribution over w and plot the
corresponding functions y(x,w).

3.4 Linear models of classification
For regression problems, the target variable t is a vector of real
numbers. For classification problems, t is a class label, e.g. t =
(0, 1, 0, 0, 0) for K = 5 classes. The simplest linear discriminant
function for binary classification can be defined as follows.

y(x) = wT x + w0

 class C1 if y(x) ≥ 0
class C2 otherwise

A more compact form where we introduce an additional dummy
input value x0 = 1 is as follows.

y(x) = w̃T x̃ w̃ = (w0,w) x̃ = (x0, x)

3.4.1 Perceptron

Given x, ϕ(x) is a fixed nonlinear transformation.

y(x) = f (wTϕ(x)), step function f (a) =

+1, a ≥ 0
−1, a < 0

Consider M, a set of misclassified patterns. A natural choice of
error function would be |M|. However, methods based on changing
w using the gradient of the error function cannot then be applied,
because the gradient is zero almost everywhere. We therefore
consider an error function where we multiply the target value t ∈
{−1,+1}:

EP(w) = −
∑
n∈M

wTϕntn

Applying the stochastic gradient descent algorithm,

w(τ+1) = w(τ) − η∇EP(w) = w(τ) + ηϕntn

The perceptron convergence theorem states that if there exists an
exact solution, in other words, if the training data set is linearly
separable, then the perceptron learning algorithm is guaranteed to
find an exact solution in a finite number of steps. For datasets that
are not linearly separable, the perceptron learning algorithm will
never converge.

3.4.2 Logistic regression

Suppose a binary classification. Its odds are defined as follows.

odds =
P(C1)
P(C0)

=
P(C1)

1 − P(C1)

We model the log odds, or logits, with a linear model. It is beneficial
since (i) the probabilities are often non-linear, (then logits are linear)
and (ii) logits range in [−∞,∞].

log
( P(C1|x)
1 − P(C1|x)

)
= wT x

P(C1|x)
1 − P(C1|x)

= ewT x

P(C1|x) = ewT x(1 − P(C1|x))

P(C1|x)(1 + ewT x) = ewT x

P(C1|x) =
ewT x

1 + ewT x
=

1
1 + e−wT x

= σ(wT x)

Given dataset {xn, tn}Nn=1, consider the following likelihood function
where yn = P(C1|xn), tn = 1 if xn belongs to C1, and t= (t1 · · · tN)T .



Machine Learning Spring 2024 � haewonc

p(t|w) =
N∏

n=1

ytn
n {1 − yn}

1−tn

We take the negative logarithm of the likelihood derived above,
which gives the cross-entropy error function.

E(w) = − ln p(t|w) = −
N∑

n=1

tn ln yn + (1 − tn) ln(1 − yn)

∇wE(w) =
N∑

n=1

(yn − tn)xn

This takes precisely the same form as the gradient of the sum-of-
squares error function for the linear regression model.

Decision boundary. We predict y = 1 when P(y = 1|x) > 0.5, or
equivalently wT x > 0. In other words, hyperplane (A hyperplane
is a subspace whose dimension is one less than that of its ambi-
ent space. If the space is 2-d, its hyperplanes are the 1-d lines.)
corresponding to σ = 0.5 or wT x = 0 separates the two classes.

Overfitting. MLE can exhibit severe over-fitting for data sets
that are linearly separable. It may push the decision boundary to
extreme positions to achieve perfect classification on the training
set. This results in parameter values w with very large magnitudes
that are not robust to slight variations or noise in the data.

Solution. Due to the non-linearity of sigmoid, an analytical so-
lution is not possible. The following iterative Newton-Raphson
method can be used.

w(new) = w(old) − H−1∇E(w)

where H = ∇w∇wE(w) is the Hessian matrix whose elements
comprise the second derivatives of E(w) w.r.t the components of w.

4 Support Vector Machine

4.1 Maximum margin
The margin M is given by the perpendicular distance to the closest
point, i.e. support vector. Consider a plus-plane w · x + b = +1 and
minus-plane w · x + b = −1. The vector w is perpendicular to both
planes.  Let u, v be two vectors on the plus plane. w · (u − v) = 0.

Let x− be any point on the minus plane, and x+ be the closest
plus-plane point to x−. They are any point in Rm, not necessarily

a data point. Since the vector from x− to x+ is perpendicular to
planes, x+ = x− + λw for some λ.

w · x+ + b = 1
w · (x− + λw) + b = 1

w · x− + b + λw · w = 1
λw · w = 2

M = ||x+ − x−|| = ||λw|| =
2
||w||

Maximizing
2
||w||

is minimizing
1
2
||w||2

4.2 Learning maximum margin classifier
QP is a class of optimization algorithms to maximize a quadratic
function of some real-valued variables subject to linear constraints.

min
w,b

1
2
||w||2 (objective) (w · x j + b)y j ≥ 1 (constraints)

Rewrite the constraints using one Largrange multiplier a j per ex-
ample. Largrangian is

L(w,α) =
1
2
||w||2 −

∑
j

α j[(w · x j + b)y j − 1]

where α j ≥ 0. Our goal now is to solve

min
w,b

max
α≥0

L(w, α)

KKT conditions are:

∂L
∂w
= w −

∑
j

a jy jx j = 0

∂L
∂b
= −
∑

j

a jy j = 0

Substituting these values back in, we obtain:

max
α≥0,
∑
α jy j=0

∑
j

α j −
1
2

∑
i, j

yiy jαiα j(xi · x j)

This dual formulation only depends on dot-products of the features.

4.3 Soft margin classifier
The data might not be linearly separable. Ideas?

1. Minimize margin M and the number of train set errors Nnumber of errors
 ill-defined optimization

2. Minimize M +C · Nnumber of errors where C is tradeoff parameter
 Not expressed as quadratic programming problem→ Slow
 Doesn’t distinguish between disastrous errors and near misses

 Minimize M +C· distance of error points to their correct place



Machine Learning Spring 2024 � haewonc

1
2
||w||2 +C

R∑
k=1

ξk (objective)

(w · xk + b)yk ≥ 1 − ξk, ξk ≥ 0 (constraints)

The corresponding Lagrangian is

L(w,α) =
1
2
||w||2+C

R∑
k=1

ξk−
∑

j

α j[(w ·x j+b)y j−1+ξ j]−
∑

j

µ jξ j

where α j, µ j are Lagrange multipliers. We can use KKT conditions
eliminate w, b, ξ from the Lagrangian.

max
∑

j

α j −
1
2

∑
i, j

yiy jαiα j(xi · x j)

It is identical to the separable case, except the constraints:

0 ≤ αk ≤ C,
∑

k

αkyk = 0

Then
w =
∑

k

αkyk xk b = yK(1 − ξK) − xK · w

where K = argmax
k

αk

Classifier is
f (x,w, b) = sign(wx − b)

4.4 QP with basis functions

Polynomial basis function (order=2)

Just substitute xk with Φ(x)k) in Lagrangian, in w, and in classifier. A
trick to compute Φ(xi) ·Φ(x j) in O(m) where m is number of features.

Φ(a) · Φ(b) = 1 + 2
m∑

i=1

aibi +

m∑
i=1

a2
i b2

i +

m∑
i=1

m∑
j=i+1

2aia jbib j

Polynomial K(a, b) = (a · b + 1)d is an example of kernel function.
There are other kernel functions:

• Radial-basis-style: K(a, b) = exp
(
−

(a − b)2

2σ2

)
• Neural-net-style: K(a, b) = tanh(κa · b − δ)

SVM don’t overfit as much as you’d think. No matter what the
basis function, there are really only up to R parameters: α1, · · · , αR,
and usually most are set to zero by the maximum margin. Asking
for small ||w||2 is like weight decay in neural networks and like
ridge regression (L2 regularization).

5 Tree-based models

5.1 Decision tree (DT)

• Each internal node tests and attribute xi

• Each branch assigns an attirbute value xi = v
• Each leaf assigns a class y
• To classify input x: traverse the tree from root to leaf

DTs can represent any function of the input attributes. Learning
the simplest DT is an NP-complete problem. Resort to a greedy
heuristic: recursively split on best attribute (feature).

5.1.1 Entropy

Good split if we are more certain about classification after split.
We define an entropy H(Y) of a random variable Y:

H(Y) = −
∑

i = 1kP(Y = yi) log2 P(Y = yi)

High entropy Low entropy
Y is from distribution Uniform-like Varied
Histogram Flat Many lows & highs
Valued sampled from it Less predictable More predictable

Conditional entropy H(Y |X) of a random variable Y conditioned
on a random variable X:

−

v∑
j=1

P(X = x j)
k∑

i=1

P(Y = yi|X = x j) log2 P(Y = yi|X = x j)

Information gain is decrease in entropy (uncertainty) after splitting.

IG(X) = H(Y) − H(Y |X)

5.2 Learning decision trees
1. Start from empty decision tree
2. Split on next best attribute (feature)

argmax
i

IG(Xi) = argmax
i

H(Y) − H(Y |Xi)

3. Recurse

5.2.1 Base cases

Stop if

1. all records in current data subset have same output
2. all records have exactly the same set of input attributes
3. all attributes have zero information gain

→ may enable perfect classification but can lead to overfitting.



Machine Learning Spring 2024 � haewonc

(a) If we have 3 (b) If we omit 3

Base case 3: XOR problem

5.3 Overfitting
Standard decision trees have no learning bias.

• Training set error is always zero if no label noise.
• High variance
• Must introduce some bias towards simpler tree

Strategies for simpler trees: fixed depth, fixed number of leaves, etc.

5.3.1 Pruning a tree

Pchance is the probability that we observe the same probability
distribution when Y is completely uncorrelated with specific X j.
Computed via chi-squared test. Prune if pchance > some value.

5.4 Real-valued features
We use threshold splits: split on attribute X at value t. One branch
represent X < t, other X ≥ t. Allow repeated splits on same
variable.

5.4.1 Picking the best threshold

IG(Y |X:t), information gain for Y when testing if X ≥ t or X < t.

H(Y |X:t) = p(X < t)H(Y |X < t) + P(X ≥ t)H(Y |X ≥ t)
IG(Y |X:t) = H(Y) − H(Y |X:t)
IG∗(Y |X) = max

t
IG(Y |X:t)

5.5 Ensemble method
5.5.1 Bagging (Random forest)

Sampling with replacement (bootstrap) and then building an ensem-
ble reduces the variance of the forest without increasing the bias.
Sampling w/o replacement would lead to pretty high variance.

For regression, yCOM(x) =
1
M

M∑
m=1

ym(x) (average). Suppose the

model ym(x) = h(x) + ϵm(x). The average sum-of-squared error is
as follows:

Ex[{ym(x) − h(x)}2] = Ex[ϵm(x)2]

Require: Classifiers C, train set S = {X,Y}, inducer I, integer T
for T bootstrap samples do

S ′ ← bootstrap from S ▷ i.i.d. sample w/ replacement
Ci ← I(S ′)

C∗(x)← argmax
y∈Y

∑
i:Ci(x)=y

1 ▷ the most often predicted label y

The average error in the models is as follows.

EAV =
1
M

M∑
m=1

Ex[ϵm(x)2]

The average error of the committee is as follows.

ECOM = Ex

[{ 1
M

M∑
m=1

ym(x) − h(x)
}2]
= Ex

[{ 1
M

M∑
m=1

ϵm(x)
}2]

Assuming zero mean and uncorrelated errors Ex[ϵm(x)] = 0 and

Ex[ϵm(x)ϵl(x)] = 0(m , l), ECOM =
1
M

EAV. → variance reduced!

5.5.2 Boosting

AdaBoost
for i = 1 to N do w(1)

i = 1
for m = 1 to M iterations do

Fit weak classifier m to minimize ϵm =
∑

i w(m)
i I(xi)/

∑
i w(m)

i
where I(xi) = 1 if fm(xi) , yi and 0 otherwise
αm ← ln(1 − ϵm)/ϵm

for i = 1 to N do
w(m+1)

i = w(m)
i eαmI(xi)

AdaBoost use exponential loss.



Machine Learning Spring 2024 � haewonc

6 Graphical models
The joint distribution of variables can be decomposed via the chain
rule.

p(x1, · · · , xK) = p(xK |x1, · · · , xK−1) · · · p(x2|x1)p(x1)

If the dependence structure is known, we can factorize the joint
distribution where pak is the set of parents of xk.

p(x) =
K∏

k=1

p(xk |pak)

We assume directed acyclic graphs (DAGs) which show conditional
independence relationships.

p(a, b|c) =
p(a, b, c)

p(c)
= p(a|c)p(b|c)

a y b | c

6.1 Bayesian linear model
Revisit the linear model in Sec. 3.3. We will treat t,w as random
variables (since they are outcomes that are not deterministically known
before the observation). Their joint distribution can be written:

p(t,w|x, α, σ2) = p(w|α)
N∏

n=1

p(tn|w, xn, σ
2)

The equation assumes that:

• The weights w are drawn from some prior distribution that
doesn’t depend on the data.
• Given the weights, the likelihood of the observed data is inde-

pendent across data points.

 Don’t try to derive the equations. Just think that posterior is our
updated belief on prior by observing data, which is multiplying the
likelihood of data points on prior.

6.1.1 Graphical model
We draw a representative node tn and
surround this with a plate, labelled with
N indicating that there are N nodes of
this kind. We denote observed variables
such as tn by shading. Conversely, w is
not observed, or, latent/hidden variable.

You may understand this as a probabilistic model of how data
samples are generated, i.e. ancestral sampling.

Let us extend this for inference.

p(t̂, t,w|x̂, x, α, σ2)

=

[ N∏
n=1

p(tn|xn,w, σ2)
]
p(w|α)p(t̂|x̂,w, σ2)

p(t̂|x̂, x, t, α, σ2) ∝
∫

p(t̂, t,w|x̂, x, α, σ2)dw

6.2 Linear-Gaussian models
A multivariate Gaussian can be expressed as a directed graph. Con-
sider an arbitrary DAG over D variables where node i represents a
single continuous random variable xi having a Gaussian distribution.

The mean of this distribution is taken to be a linear combination of
the states of its parent nodes pai,

p(xi|pai) = N
(
xi

∣∣∣∣∣ ∑
j∈pai

wi jx j + bi, vi

)
where wi j, bi are parameters governing the mean, and vi is the
variance of the conditional distribution for xi. The log of the joint
distribution is then the log of the product of these conditionals over
all nodes in the graph:

ln p(x) =
D∑

i=1

ln p(xi|pai)

= −

D∑
i=1

1
2vi

(
xi −
∑
j∈pai

wi jx j − bi

)2
+ const

This is a quadratic function of the components of x = (x1, · · · , xD)T ,
and hence the joint distribution p(x) is multivariate Gaussian.

We can determine the mean and covariance of the joint distribution
recursively as follows. Each xi has (conditional on the states of its
parents) a Gaussian distribution and so

xi =
∑
j∈pai

wi jx j + bi +
√

viϵi

where ϵi is a zero mean, unit variance Gaussian random variable
satisfying E[ϵi] = 0 and E[ϵiϵ j] = Ii j where Ii j is the i, j element of I.

E[xi] =
∑
j∈pai

wi jE[x j] + bi

Thus, we can estimate E[x] = (E[x1], · · · ,E[xD])T by starting from
bottom nodes and working recursively through the graph. The
covariance matrix can also be similarly obtained.

6.3 Other examples
6.3.1 Naive Bayes

z blocks the path between xi, x j and so xi y x j. If, however, we
marginalize out z (so that it is unobserved), they are no longer blocked.
This tells us that in general the marginal density p(x) will not factorize
with respect to the components of x.

Suppose our observed variable consists of a D-dimensional vector
x, and we wish to assign x to one of K classes. z is one-hot encoded
class vector. We can define a generative model by introducing a
multinomial prior p(z|µ) over the class labels, where the µk is the
prior probability of class Ck, and conditional distribution p(x|z).
The conditional independence assumption is helpful when dimen-
sionality D of the input space is high, making density estimation
challenging.



Machine Learning Spring 2024 � haewonc

6.3.2 Markov blanket

Consider a joint distribution p(x1, · · · , xD) where xi conditioned
on all of variables x j,i.

p(xi|x j,i) =
p(x1, · · · , xD)∫
p(x1, · · · , xD)dxi

=

∏
k p(xk |pak)∫ ∏

k p(xk |pak)dxi

We now observe that any factor p(xk |pak) that does not have any
functional dependence on xi can be taken outside the integral over
xi, and will therefore cancel. p(xi|pai) will depend on the parents
of nodes xi, whereas p(xk |pak) will depend on children of xi as
well as on the co-parents, which is, parents of node xk other than
xi. The set of nodes comprising the parents, the children and
the co-parents is called the Markov blanket. We can think of the
Markov blanket of a node xi as being the minimal set of nodes that
isolates xi from the rest of the graph.

6.4 Markov random field
Markov random fields are undirected graphical models. You may
consider nodes as particles having potentials. Its probability defini-
tion is influenced by the following Boltzmann distribution.

pi =
1
Q

e−ϵi/(kT ) =
e−ϵi/(kT )∑M
j=1 e−ϵi/(kT )

Their conditional independence property can be written as follows
when there is no direct link between xi and x j given all other nodes.

p(xi, x j|x\{i, j}) = p(xi|x\{i, j})p(x j|x\{i, j})

The joint probability of nodes (particles) is defined as follows with
the positive potential function ψC where C means a maximal clique
(complete subgraph) and xC means the set of nodes in C.

p(x) =
1
Z

∏
C

ψC(xC) Z =
∑

x

∏
C

ψC(xC)

We are restricted to potential functions which are strictly pos-
itive it is convenient to express them as exponentials, so that
ψC(xC) = exp{−E(xC)} where E is called energy function. The
joint distribution is defined as the product of potentials, and so
the total energy is obtained by adding the energies of each of the
maximal cliques. The Hammersley-Clifford theorem proves the
correctness.

6.4.1 Image de-noising with MRF

Binary pixel values xi, yi ∈ {−1,+1}. Noising is done by randomly
flipping the sign of pixels with some small probability. Since noise
level is small, we know that there will be a strong correlation
between xi and yi. We also know that neighboring pixels xi, x j in
an image are strongly correlated.

This prior knowledge can be captured using the Markov random
field model. This graph has two types of cliques: {xi, yi}, and
{xi, x j} for neighboring pixels. The have associated energy function
that expresses the correlation between two. We choose −ηxiyi and
−βxix j where η, β > 0. to give a lower energy (thus encouraging a
higher probability) when xi, yi have same sign.

Because a potential function is an arbitrary, nonnegative function
over a maximal clique, we can multiply it by any nonnegative
functions of subsets of the clique, or equivalently we can add the
corresponding energies. We add an extra there hxi to bias model
towards particular sign. The complete energy function is:

E(x, y) = h
∑

i

xi − β
∑
{i, j}

xix j − η
∑

i

xiyi

which defines a joint distribution:

p(x, y) =
1
Z

exp{−E(x, y)}

Image denoising is achieved by, starting from xi = yi, iteratively
updating xi to decrease the energy. We stop if no further changes,
i.e. a local optimum.

6.5 Inference on a chain

Consider converting a directed chain to undirected chain. The
maximal cliques are simply the pairs of neighboring nodes, so

p(x) =
1
Z
ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N(xN−1, xN)

The marginal distribution p(xn) is obtained by summing the joint
distribution over all variables except xn:

p(xn) =
∑

x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

p(x)

Because there are N variables each with K states, there are KN

values for x and so evaluation and marginalization will scale ex-
ponentially with the length N. We can, however, obtain a more
efficient algorithm by exploiting the conditional independence.

Consider the summation over xN . The potential ψN−1,N(xN−1, xN) is
the only one that depends on xN , so we can perform the summation∑

xN

ψN−1,N(xN−1, xN)

first to give a function of xN−1. We can then use this to perform the
summation over xN−1, which will involve only this new function
and ψN−2,N−1(xN−2, xN−1), and so on. Because each summation
effectively removes a variable from the distribution, this can be
viewed as the removal of a node from the graph.

Computational costs. We have to perform N − 1 summations
each of which is over K states and involves a function of two vari-
ables. For instance, the summation of x1 involves only the function



Machine Learning Spring 2024 � haewonc

ψ1,2(x1, x2), which is a table of K × K numbers. We have to sum
this table over x1 for each value of x2 so O(K2) cost. The result-
ing vector of K numbers is multiplied by the matrix of numbers
ψ2,3(x2, x3) and so O(K2) cost. There are N −1 summations of mul-
tiplications of this kind, the total cost of evaluating the marginal
p(xn) is O(NK2). This is linear in the length of the chain.

6.5.1 Message passing

We now give a powerful interpretation of this calculation in terms
of the passing of local messages around on the graph.

p(xn) =
1
Z
µα(xn)µβ(xn)

We shall interpret µα(xn) as a message passed forwards along the
chain from xn−1 to xn. The message µα(xn) can be evaluated recur-
sively because

µα(xn) =
∑
xn−1

ψn−1,n(xn−1, xn)
[∑

xn−2

· · ·

]
=
∑
xn−1

ψn−1,n(xn−1, xn)µα(xn−1)

We therefore first evaluate

µα(x2) =
∑

x1

ψ1,2(x1, x2)

and then apply above repeatedly until we reach the desired node.
Finally, consider joint distribution for two neighboring nodes. This
is similar to the evaluation of the marginal for a single node, except
that there are now two variables that are not summed out.

p(xn−1, xn) =
1
Z
µα(xn−1)ψn−1,n(xn−1, xn)µβ(xn)

Thus we can obtain the joint distributions over all of the sets of
variables in each of the potentials directly once we have completed
the message passing required to obtain the marginals.

6.6 Inference on a tree
We now extend this toward the inference on a tree or graph.

6.6.1 Factor graph

Generalization of all previous directed and undirected cases. Xs

denotes a set of variables. fS is a function of variables. A fac-
tor, represented by a red square, represents a joint distribution of
variables. The factor graph is for representing such factors more
explicit and the factorization of the joint distribution becomes clear.

p(x) =
∏

s

fs(xs)

Converting a graph to a factor graph is not deterministic (and may
require domain knowledge).

6.6.2 Sum-product algorithm

Utilizes the factor graph framework for the exact inference on
tress. For simplicity, we assume discrete variables, i.e. belief
propagation:

p(x) =
∑
x\x

p(x)

Let’s partition the factors in p(x) into groups; each group associated
with each factor node that is a neighbor of x, denoted ne(x).

p(x) =
∏

s∈ne(x)

Fs(x, Xs)

Xs denotes the set of all variables in the subtree connected to the x
via fs and Fs(x, Xs) represents the product of all the factors in the
group associated with fs. Using this and interchanging

∑
and
∏

we obtain:

p(x) =
∏

s∈ne(x)

[
∑
Xs

Fs(x, Xs)] =
∏

s∈ne(x)

µ fs→x(x)

Here we define a messages from the factor nodes fs to x:

µ fs→x(x) =
∑
Xs

Fs(x, Xs)

The marginal p(x) is the product of all the incoming messages.

Note that Fs(x, Xs) can itself be factorized.

Fs(x, Xs) = fs(x,x1, · · · , xM)G1(x1, Xs1) · · ·GM(xM , XsM)

where x1, · · · , xM are variables associated with fx. The messages
passed from variable nodes to factor nodes are defined as:

µxm→ fs (xm) =
∑
Xsm

Gm(xm, Xsm)

The algorithm begins with messages sent by the leaf nodes.

6.6.3 Max-sum algorithm

The sum-product algorithm is for calculating the marginal distri-
bution given a joint probability expressed as a factor graph. The
max-sum algorithm is for finding the largest probability values.
Suppose the chain network we used before.



Machine Learning Spring 2024 � haewonc

max
x

p(x) =
1
Z

max
x1
· · ·max

xN
[ψ1,2(x1, x2)ψ2,3(x2, x3) · · · ]

=
1
Z

max
x1

[ψ1,2(x1, x2)[· · ·max
xN

ψN−1,N(xN−1, xN)]]

For each option of xN , calculate in the reverse order for the follow-
ing computation (with memorization), i.e. dynamic programming.
Extend this to a tree, but using log-probability for numerical stabil-
ity since the product of probabilities quickly decays to zero.

µ f→x(x) = max
x1,··· ,xM

[
ln f (x, x1, · · · , xM) +

∑
m∈ne( fs)\x

µxm→ f (xm)
]

µx→ f (x) =
∑

l∈ne(x)\ f

µ fl→x(x)

7 Variational inference
A functional L is a mapping from function to value, e.g. entropy
H[p]. The variational method is to solve the argmin

f
L[ f ].

Suppose a Bayesian model where X denotes a set of observed vari-
ables and Z denotes a set of hidden variables and parameters. Our
probabilistic model models p(X,Z). We are interested in p(Z|X).
q(Z) is for approximating p(Z|X) when p(Z|X) is complicated. We
say L(q) a evidence lower bound (ELBO), and ln p(X) ≥ ELBO(q).

ln p(X) = L(q) + KL(q||p)

L(q) =
∫

q(Z) ln
{ p(X, Z)

q(Z)

}
dZ

KL(q||p) = −
∫

q(Z) ln
{ p(Z|X)

q(Z)

}
dZ

q∗(z) = argminKL(q||p)

However, the exact KL divergence calculation is intractable:

7.1 Mixture of Gaussians
There are K Gaussians. zn is a one-hot vector which denotes a
membership. π, µ,Σ are mixing coefficients, means, and precisions,
respectively.

p(Z|π) =
N∏

n=1

K∏
k=1

πznk
k

p(X|Z, µ,Λ) =
N∏

n=1

K∏
k=1

N (xn|µk,Λ
−1
k )znk

We extend this to the variational mixture of Gaussians. We use
the Dirichlet distribution for π, which is a conjugate prior for the
multinomial likelihood. (A similar relationship can be observed
between the beta prior and the binomial likelihood.)

f (x1, · · · , xk;α1, · · ·αk) =
1

B(α)

k∏
i=1

xαi−1
i

where B(α) =
∏k

i=1 Γ(αi)

Γ(
∑k

i=1 αi)

where gamma function Γ is extension for factorial to complex
numbers. Using the Dirichlet prior is not only semantically correct
but also mathematically advantageous.

p(π) = Dir(π|α0) = C(α0)
K∏

k=1

πα0−1
K

We use the Gaussian-Wishart prior for µ,Σ.

p(µ,Λ) = p(µ|Λ)p(Λ)

=

K∏
k=1

N (µk |m0, (β0Λk)−1)W(Λk |W0, v0)

7.1.1 Bayesian Gaussian mixture model

p(X,Z, π, µ,Λ) = p(X|Z, µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ)

Let’s use variational distribution q which factorizes q(Z, π, µ,Λ) =
q(Z)q(π, µ,Λ) for simplicity. Generally, q(Z) =

∏M
i=1 qi(Zi). Its

ELBO is defined as follows.

L(q) =
∫ ∏

i

qi{ln p(X,Z) −
∑

i

ln qi}dZ

=

∫
q j

{ ∫
ln p(X,Z)

∏
i, j

q jdZi

}
︸                          ︷︷                          ︸
=Ei, j[ln p(X,Z)]=ln p̃(X,Z j)+const

dZ j −

∫
q j ln q jdZ j + const

=

∫
q j ln p̃(X,Z j)dZ j −

∫
q j ln q jdZ j︸                                          ︷︷                                          ︸

negative KL divergence

+const

The negative KL divergence is maximized when q j(Z j) = p̃(X,Z j).
The optimal q j is obtained by other nodes’ joint distribution.

ln q∗(Z) = Eπ,µ,Λ[ln p(X,Z, π, µ,Λ)] + const
= Eπ[ln p(Z|π)] + Eµ,Λ[ln p(X|Z, µ,Λ)] + const


	Maximum likelihood estimation
	Gaussian distribution
	Maximum likelihood for Gaussian
	Sequential estimation
	The mixture of Gaussians

	Maximum a posterior (MAP) estimation
	Coin flipping games

	Nonparametric methods
	Kernel density estimation (KDE)
	Nearest neighbor method


	Information theory
	Linear models
	Linear models for regression
	Maximum likelihood and least square
	Analytical solution of linear regression
	Geometrical interpretation
	Sequential learning
	Regularized least square
	Effect of regularization

	The bias-variance decomposition
	Bayesian linear regression
	Sequential learning of MAP

	Linear models of classification
	Perceptron
	Logistic regression


	Support Vector Machine
	Maximum margin
	Learning maximum margin classifier
	Soft margin classifier
	QP with basis functions

	Tree-based models
	Decision tree (DT)
	Entropy

	Learning decision trees
	Base cases

	Overfitting
	Pruning a tree

	Real-valued features
	Picking the best threshold

	Ensemble method
	Bagging (Random forest)
	Boosting


	Graphical models
	Bayesian linear model
	Graphical model

	Linear-Gaussian models
	Other examples
	Naive Bayes
	Markov blanket

	Markov random field
	Image de-noising with MRF

	Inference on a chain
	Message passing

	Inference on a tree
	Factor graph
	Sum-product algorithm
	Max-sum algorithm


	Variational inference
	Mixture of Gaussians
	Bayesian Gaussian mixture model



